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PART II

EXTREME VALUES IN CONTINUOUS TIME

In this part of the work we shall explore extremal and related theory

for continuous parameter stationary processes. As we shall see (in

Chapter 13) it is possible to obtain a satisfying general theory ex-

tending that for the sequence case, described in Chapter 2 of Part I,

and based on dependence conditions closely related to those used there

for sequences. In particular, a general form of Gnedenko's Theorem

will be obtained for the maximum

M(T) = supfE(t); 0 < t < T}

where E(t) is a stationary stochastic process satisfying appropriate

regularity and dependence conditions.

Before presenting this general theory, however, we shall give a de-

tailed development for the case of stationary normal processes, for

which very many explicit extremal and related results are known. For

mean-square differentiable normal processes, it is illuminating and

profitable to approach extremal theory through a consideration of the

properties of upcrossings of a high level (which are analogous to the

exceedances used in the discrete case). The basic framework and re-

sulting extremal results are described in Chapters 6 and 7 respectively.

As a result of this limit theory it is possible to show that the

point process of upcrossings of a level takes on an increasingly Poisson

character as the level becomes higher. This and related properties are

discussed in Chapter 8, and are analogous to the corresponding results

for exceedances by stationary normal sequences, given in Chapter 4.

The location of the maximum (primarily under normality) is con-

sidered in Chapter 9, along with a derivation of asymptotic Poisson

properties for the point process in the plane given by the locations

and heights of all locaZ maxima. The latter results provice asymptotic

joint distributions for the locations and heights of any given number

of the largest local maxima.
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The local behavior of a stationary normal process near a high

level upcrossing is discussed in Chapter 10, using, in particular,

a simple process (the "Slepian model process") to describe the sample

paths at such an upcrossing. As an interesting corollary it is possible

to obtain the limiting distribution for the lengths of excursions by

stationary normal processes above a high level, under appropriate con-

ditions.

In Chapter 11 we consider the joint asymptotic behavior of the

maximum and minimum of a stationary normal process, and of maxima of

two or more dependent processes. In particular it is shown that -

short of perfect correlation between the processes - such maxima are

asymptotically independent.

While the mean square differentiable stationary normal processes

form a substantial class, there are important stationary normal pro-

cesses (such as the Ornstein-Uhlenbeck process) which do not possess

this property, Many of these have covariance functions of the form

r(T) = 1 - CITIa + oiTI a as T - 0 for some a, 0 < a < 2 (the case

a = 2 corresponds to the mean-square differentiable processes). The

extremal theory for these processes is developed in Chapter 12, using

more sophisticated methods than those of Chapter 7, for which simple

considerations involving upcrossings sufficed.

Finally, Chapter 13 contains the promised general extremal theory

(including Gnedenko's Theorem) for stationary continuous-time pro-

cesses which are not necessarily normal. This theory essentially re-

lies on the discrete parameter results of Part I, by means of the

simple device of expressing the maximum of a continuous parameter pro-

cess in say time T = n, an integer, as the maximum of n "submaxima",

over fixed intervals, viz.

M(n) -max|t1, 2' ...'' Cn)

where Ci a sup{C(t); i-I < t < i}. It should be noted (as shown in

Chapter 13) that the results for stationary normal processes given in
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Chapters 7 and 12 can be obtained from those in Chapter 13 by special-

ization. However, since most of the effort required in Chapters 7 and

12 is still needed to verify the general conditions of Chapter 13, and

the normal case is particularly important, we have felt it desirable

and helpful to first treat normal cases separately.

m~naa li I • | R I |0



CHAPTER 6

BASIC PROPERTIES OF EXTREMES AND LEVEL COSSINIGS

We turn our attention now to continuous parameter stationary processes.

We shall be especially concerned with stationary normal processes in

this and most of the subsequent chapters but begin with a discussion of

some basic properties which are relevant whether or not the process is

normal, and which will be useful in the discussion of extremal behaviour

in later chapters.

We shall consider a stationary process {C(t); t >0} having a con-

tinuous ("time") parameter t >0. Stationarity is to be taken in the

strict sense, i.e. to mean that any group &(tI), ... , E(t n ) has the

same distribution as O(t 1 +T), ..., (tn + T) for all T. Equivalently

this means that the finite dimensional distributions Ftl,...,tn(xl,..., n)

P E(t ) !X ,..., (tn) !xn }I are such that Ft-F+T'.... n+T 0 Ftl,...ft n

for all choices of T, n, and tI , t2 ' ., tn.

It will be assumed throughout without comment that for each t, the

d.f. Ft(x) of E(t) is continuous. It will further be assumed that,

with probability one, E(t) has continuous sample functions -that is the

functions (Et)} are a.s. continuous as functions of t >0.

Finally we shall assume that the basic underlying probability measure

space has been completed, if not already complete. This means in partic-

ular that probability-one limits of r.v.'s will themselves be r.v.'s -

a fact which will be useful below.

A principal aim in later chapters will be to discuss the behaviour

of the maximum

M(T) - sup{U(t); 0 <t <T)

(which is well defined and attained, since & is continuous) especially

when T becomes large. It is often convenient to approximate the process

&(t) by a sequence { n(t)} of processes taking the value (t) at

all points of the form jqn' j 0, 1, 2, ... and being linear between

I
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such points, where qn + 0 as n - -. In particular this is useful in

showing that M(T) is a r.v., as the following small result demonstrates.

LEMMA 6.1 With the above notation, suppose that qn 4 0 and write

M n(T) - max{t(jqn); 0<jqn T). Then Mn (T) * M(T) a.s. as n - *, and

M(T) is a r.v.

PROOF Mn (T) is the maximum of a finite number of r.v.'s and hence is

a r.v. for each n. It is clear from a.s. continuity of &(t) that

Mn(T) - M(T) a.s. and hence by completeness M(T) is a r.v. a

We shall also use the notation M(I) to denote the supremum of t)

in any given interval I - of course it may be similarly shown that M(I)

is a r.v.

Level crossings and their basic properties

In the discussion of maxima of sequences in Part I, exceedances of a

level played an important role. In the continuous case a corresponding

role is played by the uporoasings of a level for which analogous results

(such as Poisson limits) may be obtained. To discuss upcrossings, it

will be convenient to introduce - for any real u - a class Gu of all

functions f which are continuous on the positive real line, and not

identically equal to u in any subinterval. It is easy to see that the

sample paths of our stationary process t(t) are, with probability one,

members of Gu . In fact, every interval contains at least one rational

point, and hence

P{ u(.)fG }  Z P{&(t -U),j=l

where {tj} is an enumeration of the rational points. Since C(t.) has

a continuous distribution by assumption, P{(tj =u} is zero for every

.

We shall say that the function fE€G u has a strict uq'crossing of u

u p
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at the point t0 > 0 if for some L > 0, f(t) _ u in the interval

(t 0 -£, t0 ) and f(t) > u in (to, t0 +E). The continuity of f re-

quires, of course, that f(t0) = u, and the definition of Gu  that

f(t) <u at some points t E (t0 -n, t0 ) and f(t) > u at some

points t E (t0 , t0 +Y) for each n > 0.

It will be convenient to enlarge this notion slightly to include

also some points as upcrossings where the behaviour of f is less regu-

lar. As we shall see, these further points will not appear in practice

for the processes considered in the next two chapters, but are useful in

our calculations and will often actually occur for the less regular

processes of Chapter 12. Specifically we shall say that the function

fE Gu  has an upcrossing at t0 >0 if for some £ >0 and all n >0,

f(t)< u for all t in (t0 - C, t0 ) and f(t) >u for some t (and

hence infinitely many t) in (t0 , t0 + n). An example of a non-strict

upcrossing of zero at t0 is provided by the function f(t) = t-t 0 for

t< t0  and f(t) = (t- t0 )sin((t- t0 )_
1 ) for t >t o.

The following result contains basic simple facts which we shall need

in counting upcrossings.

LEMMA 6.2 Let fE GU for some fixed u. Then,

(i) if for fixed ti, t 2 , o< t 1 <t 2, we have f(tI) <u<f(t2 ), then f

has an upcrossing (not necessarily strict) of u somewhere in

(ti, t2)

(ii) if f has an upcrossing of u at t0 which is not strict, it has

infinitely many upcrossings of u in (to , t0 +£), for any £ > 0.

PROOF (i) If f(tI) < u <f(t2 ) with t I <t 2 write

to = sup{t >tl; f(s) <u for all t, s< t}.

Clearly tI < t0 < t2 and t0  is an upcrossing point of u by f.

(ii) If to is an upcrossing point of u by f and E > 0, there is

certainly a point t2 in the interval (t0 , t0 + r) with f(t2) >u. If
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t is not a strict upcrossing there must be a point t, in (t0 , t2)

such that f(t) u. By (i) there is an upcrossing between tI and

t2 , so that (ii) follows, since I - 0 is arbitrary. 0

Downcrossing8 (strict or otherwise) may be defined by making the ob-

vious changes, and crossings as points which are either up- or downcross-

ings. Clearly at any crossing t0 of u we have f(t0) = u. On the

other hand there may be "u-values" (i.e. points t0 where f(t0) =u)

which are not crossings-such as points where f is tangential to u

or points t0  such that f(t) -u is both positive and negative in

every right and left neighbourhood of t0 -as for the function

u + (t- t0 )sin((t- t0 )).

The above discussion applies to each sample function of our process

(t) satisfying the general conditions stated since, as noted, the sam-

ple functions belong to Gu with probability one. Write, now, Nu (I)

to denote the number of upcrossings of the level u by $(t) in a

bounded interval I, and N u(t) = N u((,t]). We shall also someties

write N(t) for N u(t) when no confusion can arise.

In a similar way to that used for maxima, it is convenient to use the

"piecewise linear" approximating processes r~ (t)} to show that Nu (I)

is a r.v. and, indeed, in subsequent calculations, as for example in obtain-

ing E(N u(I)). This will be seen in the following lemma, where it will

be convenient to introduce the notation

(6.1) Jq (u) = P{ (0) < u < (q) }/q, q > 0.

LENMA 6.3 Let I be a fixed, bounded interval. With the above general

assumptions concerning the stationary process , let {q n be any se-

quence such that qn 0 and let Nn denote the number of points jqn

j= 1, 2, ... such that both (j -l)qn and jqn belong to I, and

- l)qn) < u (jq) . Then



Ni) N N U(I),

Nii) N N u(I) a.s. as n ....and hence Nu (I) is a (possibly

infinite valued) r.v.,

(iii) E(Nn) - E(Nu (I)) and hence E(N u(1)) = iin J (U) .

PROOF (i) If for some j, ((j - l)qn ) < u < (jqn) it follows from

Lemma 6.2 (i), tnat has an upcrossing between (j -l)q_ and J3c

so that (i) follows at once.

(ii) Since the distribution of r(jqn) is continuous and the set

(kqn; k= 0, 1, 2, ... ,; n = 1, 2, ... } is countable, we see that

P{(kqn) = u for any k =0, 1, 2, ... ,; n = , 2, ...} =0, and hence we

may assume that (kqn) t u for any k and n. We may likewise assume

that E does not take the value u at either endpoint of I and hence

that no upcrossings occur at the endpoints. Now, if for an integer M,

we have N u(I) >m, we may choose m distinct upcrossings tit ..., tm of

u by &(t) in the interior of I which may, by choice of E >0, be

surrounded by disjoint subintervals (ti - , ti + s), i =l, 2, .... m, of

I, such that (t) <u in (ti - , ti) and (T) >u for some

TE (ti , ti +C). By continuity, T is contained in an interval-which

may be taken as a subinterval of I- in which -(t) >u. For all suffi-

ciently large n this interval must contain a point kqn.

Thus there are points Zqn E (ti - r, ti), kqn E (ti, ti + F) such that

.qn) < u <  (kq n). For some j with Z <j <k we must thus have

((j - l)qn) < u (jqn) . Since eventually each interval (ti - 6, ti + E)

contains such a point Jqn we conclude that Nn >m when n is suffi-

ciently large, from which it follows at once that lim inf N > N (I)
n- n u

(finite or not). Since by (i), lim sup Nn < Nu(I) we see that lim N =
n- n- un n

N() as required. Finally it is easily seen that Nn  is a r.v. for

each n (Nn  is a finite sum of r.v.'s Xk = 1 if &((k- l)qn) < u < &(kqn),

and zero otherwise) so that, by completeness, its a.s. limit Nu () is

also a r.v., though possibly taking infinite values.
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(iii) Since Nn N (I) a.s., Fatou's T: a shows that lim infE(N
U nn

E(N u(I)). If E(N u(I)' - this shows at once that E(N n) )-E(Nu (I)). But

the sam. result holds, by dominated convergence, if E('u(I() , since

N < N (I) and N Nu (I) a.s.
-1

Finally, if I = (0,1), then I contains qn points Jq so

that, using stationarity,

E(N n ) = (.j n- 1) P{ (0) " u (qn ) J n (U).

Hence J q(u) , E(N u(1)) from which the final conclusion of (i'ii, f-

lows since the sequence tq n is arbitrary.

COROLLARY 6.4 If E(N u(1)) <, or equivalently if lim inf J (u) -
nu n

for some sequence -n - 0, then the upcrossings of u are a.s. strict.

PROOF If E(Nu (I)) - then N u(I) a.s. and the assertion follows

from (ii) of Lemma 6.2. )

In passing, we shall derive two small results concerning the maximum

M(T) and the nature of solutions to the equation (t) = u, which rely

only on the assumption that E(Nu (1)) is a continuous function of u.

THEOREM 6.5 Suppose that E(N u(1)) is continuous at the point u and,

as usual that P(Ir(t) =u) = 0 so that (.) EG u with probability one.

Then

(i) if tE (0,1) and (t) = u, then with probability one t is either

an upcrossing or a downcrossing point,

(ii)the distribution of M(1) is continuous at u, i.e. P{M(1) = u} =0.

PROOF (i) If (t) = u, but t is neither an upcrossing nor a down-

crossing point it is either a tangency from below or above, i.e. for

some F >0, C(t) < u (> u) for all t E (t0 - C, t0 +) or else there

are infinitely many upcrossings in (t0 - E, t0 ), (and this is precluded

by the finiteness of E(N u(1))). Further for each fixed u the proba-

bility of tangencies of u from below is zero. To see this, let Bu
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be the number of such tangencies of the level u in (0,I) , and suppose

N + Bu >m, so that there are at least m points tl, ..., tm  which are
U U-

either u-upcrossings or tanqencies from below. Since r(.) Gu with

probability one, there is at least one upcrossing of the level u - 1/n

just to the left of any t., for all sufficiently large n. This implies

Nu -B lim inf Nu-i/n,

and applying Fatou's Lemma,

E(Nu(1)) +E(Bu(1))< lim inf E(Nu 1I/n(1)) = E(Nu(1))
n--

if E(N (1)) is continuous. Since B >0, we conclude that B = 0 (withi (u1) icotnosSneBu - u

probability one). A similar argument excludes tangencies from above, and

we have proved that all u-values are either up- or downcrossings.

(ii) Since

P M(l) = u} < Pf (0) = u} + P{ (1) = u) + P{Bu > l}

the result follows as in th" proof of part (i) from PfB u = 0} =1.

Crossings by normal processes

Up to this point we have been considering a quite general stationary

process [&(t); t >0}. We specialize now to the case of a (stationary)

normaZ or Gaussian process, by which we mean that the joint distribution

of F(t I) .... , (tn ) is multivariate normal for each choice of n = 1,

2, ... and tI , t2, ... , tn. It will be assumed without comment that

,(t) has been standardized to have zero mean and unit variance. The

covariance function r(T) will then be equal to E(C(t)&(t +T)).

Obviously r(T) is an even function of T, with r(O) =E( 2(t)) =1.

Thus if r is differentiable at i = 0, its derivative must be zero

there. It is of particular interest to us whether r has two derivatives

at T = 0. If r"(0) does exist (finite), it must be negative and we

write A2  -r"(0). The quantity A2 is the second spectral moment, so

called since we have 2 = fA2dF(), where F(A) is the spectral d.f.,
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i.e. r(T) = fe dF(X). If r is not twice differentiable at zeroW s - , ,

then fX 2dF(M) = c, i.e. 2= 2 When X2 < - we have the expansion

(6.2) r(0) = 1 - 2 2 /2 + O(T ) as 0.

Furthermore, it may be shown that X -r"(0) < - if and only if (t)

is differentiable in quadratic mean, i.e. if and only if there is a pro-

cess {Y'(t)! such that h (M(t +h) -;"(t)) - Q'(t) in quadratic mean

as h - 0, and that then

E(C' (t)) = 0, Var(F ' (t)) = -r"(0),

(t), ' (t) being jointly normal and independent for each I. Further-

more

Cov( ' (t), '(t -T)) = -r"(T).

For future se we introduce also
cc c

A0 = f dF(A) = r(0) = 1 and X4 = f 4 ()

where also X4 = r (4 ) (0), when finite. An account of these and related

properties may be found in Cramfr and Leadbetter (1967), Chapter 9.

To apply the general results concerning upcrossings to the normal

case we require that (t) should have a.s. continuous sample paths.

It is known (cf. Cramr and Leadbetter (1967)), that if

(6.3) 1 - r(T) < C/$loglqla for some C , 0, a > 1, for IT I <,

it is possible to define the process C(t) as a continuous process.

This is a very weak condition which will always hold under assumptions

to be used here and subsequently-for example it is certainly guaranteed

if r is differentiable at the origin, or even if l-r(T) <CITIO for

some a > 0, C > 0.

In the remainder of this and in the next chapters we shall consider a

stationary normal process E(t), standardized as above, and such that

A2 <-. To evaluate the mean number of upcrossings of u per unit time

we need to evaluate the limit of Jq (u) defined by (6.1) as q -0.

I . . . .. . .. .. . ..



This is obtained in the following lemma which is a more general result

than we need at present, but which will be useful later also.

Let 0 and P denote the standard normal density and distribution

functions.

LEMMA 6.6 Let {(t)} be a (standardized) stationary normal process
~ ad wite ii ~' -lu) 2 -u2/

with X2 < e and write i (= p (u)) = e /2 Let q 4 0 and u

either be fixed or tend to infinity as q 4 0 in such a way that uq -0.

Then

Jq (u) = q-1P{&(0) < u < (q) } -i as q 4 0.

PROOF By rewriting the event { (O) < u <(q)} as {Ij(0) +&(q) -2ul

< U(q) - &(0)}, i.e. as {I1lU - <2 2 } where C = ( (0) +E(q)/2,

C2 = (q) - (0))/q, are uncorrelated, and hence independent, with

2 2 =2
respective variances a1 = (I +r(q))/2, o2 = 2(l.-r(q))/q , we obtain

V 1J (u) = ( iqo) P{ u Pi~ I < S}ldy

= (iiq~a2V
1  u+qy/2()= (liqolo 1  x) o2/- dx dy

y=0 x=u-qy/2 1

(6.4) = f -.Y,- e-y /2{ 2 f (ju + xy/2 ) d.1 dy.
y=0 02  2l 2- x=-l 01

Now, by simple calculation, the second factor in the integrand may be

written as

a22 2  q 2x 2y 2 2f-/- exp (-1 - a 2  S u dx,

2a1VT 2 eX=- "2 2 2 802 dx,
1 1 1

which by bounded convergence (oI i, 1- o 2 = A 2q
2 /4+ o(q 2), C2y/XQ

tends to 1. It is also immediate that the integrand of (6.4) is domi-

S2nated by the integrable function Ayecy (for some constants A, c >0)

so that an application of dominated convergence gives

lim P-ijq(u) = f-- ey 20 2dy = 1. a
0 0
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The following result - due in its original form to S.O. Rice (1945) -

is now an immediate corollary of this lemma.

THEOREM 6.7 (Rice's Formula) If {i(t)} is a (standardized) stationary

normal process with finite second spectral moment )2 (= -r"(0)) then

the mean number of upcrossings of any fixed level u per unit time is

finite and given by

"2 -u 2/2

(6.5) E(N (1) eu /

(Hence also all upcrossings are strict.)

PROOF This follows from the case u fixed, in the above lemma, togeth-

er with (iii) of Lemma 6.3. D

The above discussion has been in terms of upcrossings. Clearly, simi-

lar results hold for downcrossings. In particular, the mean number of

downcrossings is also given by (6.5).

In discussing the maximum of a stationary normal process (t) we

shall find it useful to compare with a very simple normal process

*(t) whose maximum is easily calculated using properties of its up-

corssings. Specifically let n, be independent standard normal r.v.'s

and define

(6.6) *(t) = T Cos w t + C sinw t

where w is a fixed positive constant.
It is clear that *(t) is normal and that (t), . *(tn ) are

jointly normal for any choice of ti. (This follows most simply from the
n

observation that Z ciE*(ti) is normal for any choice of ti and c..)
1

Thus E*(t) is a normal process and E(&*(t)) = 0, Its covariance func-

tion is calculated at once to be

(6.7) r(T) =E{ (n cos w t + sin w t) (n cos w(t + -t) + sin w(t+ r))

=coswt cosW (t+T) +sinwt sin w(t+ T)

= COS W T.

Thus &'(t) is weakly stationary and hence strictly so, beinq normal.

Write now n = ACos and = A sin 4, with 0 < 0 < 2. Then



(6.8) *(t) = Acos ( t- ).

The Jacobian = A, and it follows simply that A, T have joint

density

fA,(x,y) = x e '2, x 0, 0 , y 2r,

showing that A, are independent, A having the Rayleigh distribution
-2/

x e /2 (x 0) and being uniform over [0,2r). The sample paths of

C* are thus cosine functions with angular frequency w, and having in-

dependent random amplitude A and phase 0.

The distribution of the maximum M*(T) for this process can be ob-

tained geometrically. However, it is more in3tructive (and simpler) to
2

use properties of upcrossings. It is clear that 2 = ' for this pro-

cess and, writing N = Nu(T) for the number of upcrossings of u in

(0,T), we have

wT e-u2 /2
(6.9) E(N) = - /2

and

P{M*(T) >u} = P{{*(0) > u} + P{f*(Q) < u, N > 1}.

Now take wT < 7. Then if *(O) > u > 0, the first upcrossing of u occurs

after t = 7/w (see diagram), and hence {N>_, C*(0) > u} is empty, so

that

P{*(O) < u, N > I) P{N > i.

A cos (wt-¢)

Thus, since N = 0 or 1,

(6.10) P{M*(T) >u} = 1 - 4(u) + P{N>I} = 1 - 4(u) + E(N)

WT eU 2/2
= 1 - O(u) + 77T

or equivalently,
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(6.1i) P ' (T) U = - T 2 12
- 2

As a matter of interest and f(,r ir ,;., V ' I Iw: r tj 

that fr I ixnd h , ( ,

(6.2) P,M*(h) -u12 a
he (u) 2 as u

2)
(since 1- (u) :(u)/u and )2= ' . This limit in fact holds under

much more general conditions, as we shall see.

As noted above we will want in the next chapter to compare a general

stationary normal process with this special process. This compariscn

will be made by an application of the following easy conse(-uence of Lerna

3.3.

LEMMA 6.8 (Slepian) Let ;(t) and - (t). be normal processes (nos-1 2

sessing continuous sample functions but not necessarily being stationary).

Suppose that these are standardized so that E(Ul(t)) =E(r2 (t))= 0,

E2 (t)) = E( 2 (t))= 1, and write :1 (t, s) and r2 (t, s) for their co-

variance functions. Suppose that for some -0 we have r 1 (t, s)

;2(t, s) when 0• t, s . Then the respective maxima MI(t) and M2 (t)

satisfy

PM I(T)_ ur 'P(M2(T)• u}

when 0O T, .

PROOF Define Mn(1) and M ( 2 ) relative to '1 (t), 2 (t) as Ln Lemma
n n 2

6.1 where cm . Then, with probability one (1) .1M (T), io that
n n

{Mn( ) _ u) fMI(T) < u} and hence PfM(1)
nM I1 1 n u) 'PfM I(T) <u I as n .

Similarly < u} PM(T)<u. But it is clear from (3.6) of Lemma

3. ta PM(2) U f(1)3.2 that P n n U) so that the desired result follows. o

maiked crossings

The material in the remainder of this chapter will not be used until

Chapter 8 and in subsequent chapters. The reader who wishes to do so may

proceed directly to Chapter 7, and return to this section when needed.



We shall consider situations where we not only register the occur-

rence of an upcrossing, but also the value of some other random variable

connected with the upcrossinq. We may, e.q. be interested in the deriva-

tive C,' ti ) at upcrossing points t.i of u by :.(') or tiL value

(si) at downcrossing points si of zero by '(), i.e. at points

where ,(t) has a local maximum. 4e shall refer to these as

o ~ocg:':r(, and for example regard ;'(t i ) and (si ) as m-ik attached

to the crossings at ti and si . We shall here develop some methods for

dealing with such marks, along similar lines to those leading to Rice's

formula (although with some increase in complexity).

Let i;(t); t I-0T and {(t); t> >0 be jointly stationary processes

with continuous sample paths. Denote by ti the upcrossings of u by

C(t), and let, for any interval A, N u(I; A) be the number of ti in

I such that n(t I ) E A, and write N (t; A) = Nu((, t); A). N u(I),

N (t) will have the same meaning as before, e.g. N (I) =
UN (I; (--, -)). Further define

J (U; A) = q Ptr (0) < u (q) , n (0) EAIq q

LEMMA 6.9 Suppose E(N u(0,1)) .. , let I be a bounded interval, let

qn 0 as n - -, and let Nn(A) be the number of points Jqn E I

(with (j - l)qn E I) such tnat

((j-l)qn) < u < 4(jqn) and n((j -l)q n ) E A.

Then

i) if A is an open interval,

lim inf N (A) - Nu(I; A), a.s.
n n 

u

(ii) if, for every v,

(6.13) Pr((t) =u, ,(t) =v for some tEI = 0

then, for any interval A,
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limsupN (A) < N (I; A), a.s.,

and

N u(I; A) = lim N n(A), a.s.,

nUo

(iii) if A is an open interval,

E(N u(I; A)) < liminfE(N n(A))nu

and, if (6.13) holds,

E(Nn (A)) -E(N u(I; A))

and

E(N (I; A)) = lim J (u; A).

PROOF (i) Suppose that N u(I; A) > m and that ;(t) has upcrossings

of u at tI , ...P tm  in the interior of I, with n(ti ) E A, i =1,

..., m. (Be the continuity of the distribution of C(t) no upcrossings

occur at the endpoints of I.) Since q(t) is continuous we can sur-

round the t.'s by disjoint subintervals (ti -E, ti +F) of I in

which n(t) E A. It then follows as in the proof of Lemma 6.3 (ii) that

lim inf N n(A) > m.
n-

(ii) First assume Nu (I; A) = m <, and let t., .... t be as in (i).

If (a,b) is the interior of A, (6.13) precludes n(ti) = a or b, so

that n(ti) E (a,b), and we may therefore take disjoint intervals (t -E,
1

t i +c) in which n(t) E (a,b). Write Jn for the set of j's such

that (j -l)qn and jqn both belong to (ti -E, ti +E) for some i,

and Jn for the set of j's such that (j -)qn and Jq belong to
nnn

I but j f Jn" Clearly ti  is the only upcrossing of u by E(t) for

t E (ti -c, t i +c), and therefore by Lemma 6.2 (i),

(6.14) lim sup E xj < m,
n - jEJ n

where



1 if ((j - 1) q n u (jq n)  and ( (j - 1)an) E A

0 otherwise.

Furthermore, if

lim sup j > 0,
n-~ jEJ~ n

then for n arbitrarily large there are j E J* with , = 1 and
n n

hence a sequence of integers {f} such that n q- - i, with

( (ti- f, ti+ ), i 1, ... , m, and Xj = 1. From the continuity

of n(t) it follows that r(T) E [a, b], and, since (6.13) precludes

-(T) = a or b, we must have ,(-) E (a, b). Hence n(t) E (a, b) c A

for t E (i -Fl, T +cl') for some F' 0, which can be taken small

enough to make ti 4 (T -', T +F), i = 1, ..., m. Further, for

large enough, both (j -l)q and j nq- Lelong to (T -F', + ') and

thus, by Lemma 6.2 (1), ,(t) has a u-upcrossing in (T ', - +')

which contradicts N (I; A) = m. This shows that
u

lim sup E X = 0,
n-- jEJ* j

n

which together with (6.14) proves that lim sup Nn (A) < N u(I; A), a.s.

Since furthermore, (6.13) implies that N u(I; A) = N u(I;(a,b)), part (i)

gives that

lim inf 1n(A) > lim inf N ((a,b)) > N (I;(a,b)) = N (I; A).

Hence N (A) - N (1; A) = m < - a.s. as asserted. If N (I; A) =, the

conclusion follows from part (i) with (a,b) replacing A, since

N u(I; A) = N u(I,(a,b)) by (6.13).

(iii) The first conclusion follows at' once form Fatou's Lemma and part

(i), while it follows from part (ii) that E(N u(I; A)) = limE (Nn (A)),
n-

since N n (A) I Nu (I) and E(Nu (I)) < = by assumption. Further, if

I = (0,I), there are approximately q points jq E I, so that
n n-l

E(N (A)) - qn E(X ) = qu; A).
n n 

i

0
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Hence the last assertion of (iii) follows since the sequence qn is

arbitrary. a

We shall now evaluate the limit of J (u; A) for the case when ;(t)

and n(t) are jointly normal processes. For convenience we assume that

'At) is standardized, i.e. it has mean zero and variance one. As was

noted earlier, if 4(t) is quadratic mean differentiable then E(U'(t))

= 0, X2 = Var(4'(t)) <-, and C(t), C' (t) are independent for each t

and normal, and hence they have the joint density function

p(u, z) = (u)2-1/2 (zX21/2

Further it can be shown that the three processes {C(t)}, {C'(t)}, and

{n(t)} are jointly normal, and that the crosscovariances and covari-

ances can be obtained as limits, e.g.

Cov( W (t) , ri(t + -))0 lim E (h-lI Wt + h) - (t) , 7 (t + T).

h-0

Conditional distributions can also be defined, using ratios of density

functions when they exist, e.g. for a measurable set A, we define

P ) 0) EA~ (0) u, 4' (0) = z)

= y pA(0 ,4,(0),q(0)(u,z,y)/p(u,z) dy,

where P (0, },( is the density function of C(0), c'(0), n(0).

In the sequel, conditional probabilities will always be understood as

defined in this way.

LEMMA 6.10 Let {4(t)j be a zero mean normal process, jointly normal

with the process {n(t)}, and such that 4(0), V'(0), n(0) have a non-

singular distribution. Assume further that {n(t)) has continuous

sample paths and that 4(t) is differentiable in quadratic mean with

A 2 = Var(4' (t)) (< -). Then, for any measurable set A and any u,

ir J (U; A) = f zp(u,z)P{(0) EA j 4(0) =u, 4'(0) =zdz.
q+O q z=0

PROOF Write n = n(0), and as in the proof of Lemma 6.6 introduce the

independent normal r.v.'s G1 = ((0) + 4(q))/2, 2 = ((q) -4(0))/q with
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variances 2 = (r(0) + r(c))/2, 2 = 2r(0) -r and n e that
-2 aAa

Jq(u; A) = q-Pp -u - 2 E A

( u+qz/2
= - :- ( E AI. x .. 2 d

z=0 x=u-qz/2Wl) , 2} EA lx, 2 zdxdz

(6.15) = I _L 1+q/ Pdd

_ z 7 _ _ =_ ,* A =u+xqz/2, -2 = dxdz

To obtain the limit of the conditional normal probability

P{ lEAJl =v, 2 =zI as q - 0 (and v - u) we note that since '(t)

and f{i(t)} are jointly normal processes, the conditional distribution

of n = n (0) given 'i = (C(O) +t(q))/2=v, 2 = - ;(0))/q =

is also normal with mean

-2 -2
m (v,z) = E(-,) + v7 1  COy(', 1 ) + z- 2  Co.(,2

and variance
Vq =Var(n) - 12 Cov2(n,_i - 2 2 Cov2 )2

Since l '(0) in quadratic mean as q - 0 it follows

that Cov(n, 1 ) - Cov(n(O),;(O)), Cov(n, 2 ) - Cov(r(0),'(0)) as q - 0.

Since furthermore, a1 -* r(0) =Var(L(0)), 72 2 Var(' (0)), and (0),

'(0), n(0) are non-singular by assumption we have V0 = lim V > 0.
q-0 q

Thus, with m0 = li m q(u +xqz/2,z), dominated convergence gives that
q-0

for all x and z,

Pfn EA!-=u+qz/2, -y2 z} = I"2, = z' A dy ' 7

q q

-, 1 L ( '-m) dy
A V 11Vq0 0

Pfn(0) EA 1(0) =u, ,' (0) z,

as q * 0. Again by dominated convergence it follows that

Jq (u; A) f I _z u ) P(j) (0)€EA (0) =u,
z=0 2 2

,,'(0) = z dz

which is the conclusion of the lemma. a

i i ii m0
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Local maxima

As an application of the marked crosszn4s thesry we ern3 ths 7naL:er i

some comments concerning >ic -..c--.. To avoid technicalities we assunXe

that the stationary normal process :7(t),, has sample functions whic,

are, with probability one, everywhere continuously differentiable. Suf-

ficient conditions for this can be found in Cramrr and Leadbetter (1967),

and they require slightly more than finiteness of the second spectral

moment X2 ; cf. the condition (6.3) for saie -t t

Clearly then 6(t) has a local maximum at t, f 3nd only if '(t)

has a downcrossing of zero at to, and a number of res-Its for local

maxima can therefore trivially be obtained from -orrespnd:nq results

for downcrossings.

In particular, to ensure that 7(t) has onlv f-n.n.tey many local

maxima in a finite time, we need the assumption r 4, 3; where4

4 is the fourth spectral moment 4

If X4 < -, then F(t) has also a second derivative "(t) , defined

in quadratic mean, and (t, (t), ,"(t) are jointly normal with

mean zero and the covariance matrix

A 0 0 2

02 A02 0j

where we usually assume 0 = 1. Further r(t), ' (t), -- (t) have a

non-singular distribution 2rovided r is not of thp form .'1')

= A cos(wt- ). (In fact, the determinant of the covariance matrix is

2(A04 -4 ) X2A fdF() I X dF( - X2 dF()))2I, which is zero only if

F is concentrated at two symmetric points.) If '4 we also have

the analogue of (6.2),

COV( (t) , F' (t+ +)) = -r"(T) = 2 +o0 ) as 0,

and, normalizing to variance one, we obtain

-1/2 (t -1/2, 1'42
(6.16) Cov(A2  A 2 (t + ) T + i 22 2 2 X oa • 0



We will temporarily use the notation N' (T) for the nunber of local

maxima of 4 (t), 0 It <T. From Rice's form-ula (6.5) and (6.16) we obtain

that the expected number of local TaxL~a in C, Is

E(N'(T)) ( A4)/2

In Chapter 9 we shall study heights and locations of '';: "i->zx-

ma. Write Nu(T) for the number of local maxima of 7(t), 0-- t ,

whose height exceeds u, i.e. with the previous notation. if ,(t) has

local maxima at the time points {si 1, then N'(T) is the number of

s, E (0,T) such that '(s.) > u.
1 1

LEMMA 6.11 If {f(t)) is stationary normal, with continuously -1.ffer-

entiable sample paths, and with a quadratic mean second derivative z" t)

with Var(&"(t)) = A 4 < - such that E(t), ,' (t), C"(t) have a non-

singular distribution, then

0
E(N'(T)) = T f I ;zip(x,0,z) dzdx,U

X=U Z=--

where p(x,y,z) is the joint density of 1 (t), ' (t) , "(t).

PROOF We shall use Lemmas 6.9 and 6.10, identifying , (t) =-( Ct) and

-(t) = -(t). By assumption, ;-(t)- and (t:- satisfy the hvnotheses

of Lemma 6.10, with Var(- (t)) =4' so that fr any open interval A,

(6.17) lim J (0; A) z f (, ,z) P Ef A C0j 0, - (0) = Zdzq 0 q z=0 ( ), '( )<~ ) P ! i , 0 ," ( )=z d

0
= I z p(0,z)P{ (0) E A' (0) = 0, :"(0) = z' dz,
Z=--o

where p(0,z) is the density of 2'(0), 2"(0). By Theorems 6.5 and

6.7, all t such that 0(t) = V'(t) = 0, are either upcrossinrj or

downcrossing points. Lemma 6.9 (iii) implies that, writing N0 (T; V)

for the number of maxima in (0,T) with height in V = (v -t, v+),
£

P{W'(t) =0, E(t) =v for some tE (0,T)} < 2E (N6 (T; V ))

2 Tlim inf J (0; V ),
q40
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since E ((NV)Since E(NI By (.7, the ri7ht hand side can he made
arbitrarily small. Thus -(t), -(t) satisfy condition (6.13) and zy
Lemma 6.9(iii) and stationarity

E (N0 (T; (u,-))) T E( (i; (uj)) = T lir J (C; (u, )
q-0q

Inserting

P{ (0) E (u,) , (0) =0, "(0) =z; = p (x,0,z)/p(0,z) dx
u

into (6.17), the lemma follows.

By inserting the normal density

p(x,O,z) = (2Tr)- 3/ 2 (A2 D)- 1/2exp(-(A 
4 x

2 + 2) 2x z + z2)/2D) ,
where D = X4- Ax2  we obtain after some calculation

(6.18) E(N'(T)) _L T (' 4 )1/2 (1 (( D / +u 2Tr kA2 7 ~(( 4/)
2

+ (27 2)1/2 ¢(u) (u 2/1)

L.
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CHAPTER 7

EXTREMAL THEORY OF MEAL SQUARL DFERLNT1ABLL NJ L IRCESSES

In this chapter, the extremal theory of stationary normal processes

will be developed - giving analojous results to those of Chapter 3. We

shall assume throughout this chapter that '(t, ; t 0 is a station-

ary, normal process with E(,(t)) =0, L( 2(t)) <1, =(t) (t+z) :r()

where the s3pectral moment r"(0) exists finite. Equivalently this

requires that the mean num-ber of upcrossings of any level per tIrme unit

is finite (Theorem 6.7) , and also equivralently that the covariance func-

tion has the following representation,

(7.1) r(r) = 1 - '2 ,/2 + o(-
2 ) as 0.

Less regular cases where 2= 2 will be considered in Chapter 12.

As for normal sequences, the double exponential limit

P{aT(14(T) -bT) "x, - ex(-e - x ) as T

(for M(T) = sup{(t); 0 < t <Ti as in Chapter 6) will be derived under

the weak condition

(7.2) r(t) log t - 0 as t .

This is the continuous time analogue of (3.1), and it will be used to

derive a version of Lemma 3.1, before starting the main development.

Still weaker conditions corresponding to (3.12) will be obtained at the

end of this chapter. In the following lemma we shall consider a level

u which increases with the time period T in such a way that

E(N u(T)) remains constant, i.e. T1, remains constant, where o =

E(Nu (1)) - Ar 2e

We shall also consider points {kq; k =l1,2...} where q depends

on u (or equivalently on T) and q * 0 as u (or T) - -. The

statement that "a property holds provided Y = T(u) , 0 sufficiently

slowly" is to be taken to have the obvious meaning that there exists

some T 0 (u) + 0 for which the property holds, and it holds for any
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r(u) such that 1(u) - 0 but r0 (u) 2 :(u) as u . . The following

is the promised continuous analogue of Lemma 3.1.

LEMMA 7.1 Let c > 0 be given.

(i) If (7.2) holds, then sup ir(t)j;jt >c = l -I.

(ii) Suppose that (7.1) and (7.2) both hold. Let T - T/p., where T

is fixed and u = E(N (1)) =  1 /2 e-u 2 2 , so that u - (2 loaT)1 12

u2-,7 2

as T - (as is easily checked). If qu = q(u)u 0 sufficiently slowly

as u then

- Z r(kq)Je- u 2 /(l + r(kq)j) , 0 as T .
q ; kq<T

PROOF (i) As in the discrete case (cf. remarks preceding Lemma 3.1)

if r(t) = 1 for any t > 0, then r(t) = I for arbitrarily large

values of t which contradicts (7.2). Hence tr(t) e 1 for

(t > c, and since r(t) is continuous and tends to zero as t ..

we must have jr(t)l bounded away from 1 in itI > c, and (i)

follows.

(ii) As in the discrete case, choose a constant such that

0 + , Letting K be a generic constant,

T Z Ir(kq) e-U 2 /(l + Ir(k q) ]) <T+I eu 2 /(l +6)
q B-k< q 2c£kq£T s

KI+l 2/(l + 6)

q

K T + 1 - 2/(1 + 6)
q 2

(log T)T6 + 1 - 2/(1 + 5)

since u2 _ 2 logT, as noted. If y is chosen so that 0 < Y1-6 B,

the last expression is dominated by K(qu)- 2T-  which tends to zero

provided uq - 0 more slowly than T"y/ 2 (= Ke-¥U2 /4. Hence this sum

tends to zero.
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2 2 2By writing e-u /(l + r(kq) ) =-U u 2 r(kq) /(l +'r(kq))Byw=in e ' we see

that the remaining sum does not exceed

2 2T eU Z r(kg) r(kq)

q
T <kqT

Again as in the discrete case, if 6(t) = sup Ir(s) log s then
s~t

6(t) - 0 as t * and for s > t , I we have r(s) e(t)/log s
_

2 K 2K
(t)/log t. Thus for kq T, u r(kq) Klog T A(T )/lo T NT)

which tends to zero, uniformly in k. Hence the exponential term

e 'ulr(k) is certainly bounded in (k,u). It is thus sufficient to

show that

Se- Z r(kq) - 0 as T
q V <'kq<T

But this does not exceed

K-2 T 6(,6)/logT <K6(T3l/(q 2u2
q q

which again tends to zero provided qu - 0 sufficiently slowly (i.e.

slower than 6(T ) 1/2).

Having proved this technical lemma, we now proceed to the main deri-

vation of the extremal results under the assumption that r"(0) exists

(i.e. X2 <-) and (7.2) holds. The condition A2 <- guarantees that

the point process of upcrossings of a level u will have a finite in-

tensity. The case X2 =_ is also of interest, and, as noted, will be

treated in Chapter 12, but requires the use of more complex methods

(such as an extended definition of upcrossings).

Our basic technique here is to divide the interval (0,T) (where T

becomes large) into n pieces of fixed length h (n= [T/h]). Then M(T)

will clearly be close to M(nh) which is the maximum of n r.v.'s

C = M((j- l)h,jh), j =1,2,..., n, (the ( } forming a stationary se-

quence). Thus we might expect that the methods used for sequences would

apply here and this is the case (although we shall organize our argu-

ments slightly differently to better suit the present purposes).
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It is therefore not surprising that the tail of the distribution of

the i.' i.e. PM(hf ) u; (for fixed h) plays a central role. In fact

the same asymptotic form (6.12) holds for this tail probability here,

as did for the special process r(t) = cos t + , sin t. In this pres-

ent chapter it will be sufficient to obtain the following somewhat

weaker result. In this we shall use Slepian's Lemma (Lemma 6.8) to com-

pare maxima of c(t) and r*(t) along the lines of a procedure origi-

nally used by S.M. Berman (1971 b).

LEMMA 7.2 Suppose that the (standarized) stationary normal process

{ (t) satisfies (7.1). Then, with the above notation,

(i) for all h , 0, P(14(h) , u) < 1 -D(u) + h

so that limsupP M(h) > u}/(oh)< 1,
U,,,

(ii) given < 1 there exists h 0 =h 0 ()) such that for 0 h h 0

(7.3) P{M(h) ,u} > 1- (u) +e h

so that liminfP{14(h) > u}/(Uh) >a for 0 <h <h 0 =h 0 (e).

PROOF (i) follows since

P{M(h) > u} < P{,(0) > u} + P{N (h) > 1)

u<_l- (u) + E(Nu(h)) .

T'ie secon result (ii) follows simply froht. Slepian's Lemma (Lem-a

6.3) by comparison with the simple process C*(t) given by (6.6). For

if W =ex1 / 2 we have, by (7.1), r(t) <coswt for 0 <t h <7/W

(h0 = h0 (9) -0). 3ut this shows that the covariance function of ,(t)

is dominated by that of '(t) in [0,h 0] and hence P{M(h) >u -

P{eI(h) >u( for h h0 , (with MI as in (6.10)), which then aives

(ii).

Our remaining task is to approximate the maximum M(T) (for increa-

sing T) by the maxima over suitable, separated, fixed length subinter-

vals, and show asymptotic independence of the maxima over these



intervals. First we give a simple but useful lemma. In this, for q , 0,

N and N (q ) will denote the number of upcrossings of u in a fixed
u u

interval I of length h, by the process ;,:(t) :, and the sequence

f (kq) }, respectively. More precisely, N(q) is the number of kq E I

such that (k -l)q E I and '((k -l)q) , u < (kq) (cf. Lemma 6.3
(q

with q for q and N =N n

LEMMA 7.3 If (7.1) holds, with the above notation, as u * , qu - 0,

(i) E(N(q)) = hu + oU)
u

(ii) P{M(I) _u) = P{(kq) <u, kqE I) + o(i)

where each o(w)-term is uniform in all such intervals I of

length h < h0 for any fixed a0 > G.

PROOF The number of points kq E I with (k- 1)q E I is clearly

(h/q) - a where 0 < a < 2. Hence with J (u) defined by (6.1), Lemma- q

6.6 implies that

E(Nu(q) (h+ )P{.( 0 ) - u < 7(q)I
u q

= (h +Bq)J q(u)

= Lh(l o(1)) + O(,q)

where the o- and 0-terms are uniform in h so that (i) clearly holds

with o(i) uniform in 0 < h , h 0 .

To prove (ii), note that if a is the left-hand endpoint of I,

0 < P{ (:q) < u, kc EI} - P{(1(h) < ul

P{ (a) >u) + P[r,(a) < u, Nu > 1, N(q)=0
u- u

< 1 - (u) + P(Nu- N (q) > II
u u -

The first term is o(o(u)) = o(U), independent of h. Since N - N(
u u

is a non-negative integer-valued random variable (cf. Lemma 6.3 (i)),
the second term does not exceed E(Nu -N(q)) which by (i) is o(w),

u

uniformly in (0,h0). Hence (ii) follows,
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Now let u, T - in such a way that T , r > 0. Fix h - 0 and

write n = [T/h]. Divide the interval [0,nh] into n pieces each of

length h. Fix E, 0 <c <h and divide each piece into two - of length

h-E and E, respectively. By doing so we obtain n pairs of inter-

vals IV If, ... I , I*, alternately of length h-E and E, making' n

up the whole interval [0,T] apart form one further piece which is

contained in the next pair, In+l' I*+l

LEMMA 7.4 As u - -, qu - 0 and TI. T > 0,

n T

(i) lir sup jP{M(U I <) u} - PfM(nh) u} < C
n n

(ii) P{ (kq) _< u, kq E U I9 - P{M(U I) < u} 0.1 ~ 1

PROOF For (i) note that

n

0 < P{M(U I.) < u} - P{M(nh) 'u}
I

<nPffI(I*) > u}

SP{M(I) u/()

since n = (T/hI - T/(Nh). Since I* has length E, (i) follows from

Lemma 7.2 (i).

To prove (ii) we note that the expression on the left is non-negative

and dominated by

n/
E (P{ (kq) < u, kq EI.} - P{M(I.) <u)

j=l /

which by Lemma 7.3 (ii) does not exceed no(p) [T/h]o(p) = o(i),

(the o()-term being uniform in the Ii's), as required. a

The next lemma, implying the asymptotic independence of maxima, is

formulated in terms of the condition (7.4), also appearing in Lemma 7.1.

LEMMA 7.5 Suppose r(t) - 0 as t - - and that, as T o , au * 0,

(7.4) T E r(kq) le - u 2 / (1 + Ir(kq) ) 0
c<kq<T

for each c > 0. Then as T - , qu * 0, Tp I T,



n n

(i) P{ (kq) < u, kq EU I, - 7 P{ (kq) <u, kqEI.} E 0
1 3 j=l

nn 2T
(ii) iim sup I P (kq) u, kq Iur 1i -M

T j l - -

for each c, 0 _ < h.

PROOF To show (i) we use Lemma 3.2, and compare the maximum of
n

"(kq), kq E U I. under the full covariance structure, with the maximum1

of r(kq), assuming variables arising from different I j-intervals are
j 1

independent. To formalize this, letAi = (J be the covariance
0 0

matrix of (kq), kq EU I. and let A0 = (ij.) be the modification
3 Ji

obtained by writing zeros in the off-diagonal blocks (which would

occur if the groups were independent of each other); e.g. with n = 3,

AI 2 A

1 A2 1  A22 1 2 3  = 0 0

L -..--- -----......--- ....I
A1 32 A33 o 0 A3 3A3 1

From Lemma 3.2 we obtain

n n
(7.5) jP{(kq) :< u, kq E U I } - H P (kq) <u, kq E I}

1 j=l

S1 0 2 -1/2 exp(u2/(+

2r 1<i<j<L( -(- xi i jnI

where L is the total number of kq-points in U I., and Vij = I.Xiji.

Since all terms with i,j in the same diagonal block vanish, while

otherwise sup Pij = 6 < I by Lemma 7.1 (i), we see that the double

sum does not exceed

K Z* i i iexp(-u 2/(I +0iPij
)

where E* indicates that the summation is carried out over i < j with

(i,j) in the off-diagonal blocks only. But Pij is of the form jr(kq)j

where there are not more than T/q terms with the same k-value. Thus,

since the minimum value of kq is at least c, we obtain the bound
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n n
Pi (kq) <u, kq EU I } - 2 P{ (kq) <u, kq E I

1 j=l -

< K T 1 r(kq) e - u 2/(l + 'r(kc:)

q c<kq<T

which tends to zero by Assumption (7.4) so that (i) follows.

To prove (ii), note that by Lemma 7.3 (ii),

0 < P{(kq) < u, kqEI.} - P1(Ij) < u} = o(G)

(uniformly in j) and

0 < P{M(Ij) <u} - P{M(h) <ul = P{M(I ) >u}

so that by Lemma 7.2 (i), for sufficiently large n (uniformly in j)

0 < P. - P < 2PE-- -

where Pj = P{&(kq) <u, kqEI}, P = P(M(h) <u}. Hence

n n n _n
0 < H P. - Pn < (max P - P < 2nE

j=l-- 3

(using the fact that y n xn < n(y-x) for 0 <x<y<l). Part (ii) now

follows since np - To/h T T/h. 0

The basic extremal theorem now follows readily.

T .1/2 e-U2/2

THEOREM 7.6 Let u, T - in such a way that Ti = T 2

T > 0. Suppose that r(t) satisfies (7.1) and either (7.2) or the

weaker condition (7.4) (cf. Lemma 7.1). Then

(7.6) P{M(T) <u) - e - T as T *

PROOF By Lemma 7.1 the assumption (7.4) of Lemma 7.5 iolds. From Lemma

7.4 and 7.5 we obtain

lim sup IP(M(nh) <u- pn{M(h) <ull < KL
T-

for some K independent of c, and since E > 0 is arbitrary it fol-

lows that

P{M(nh) < u - pn{M(h) < u) - 0.
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Further, since nh , T (n l)h, it follows along now farmilllar

lines that

0 , P M(nh) -u: - P M (T) - u h) 1 .. h

which tends to zero, so that

P{M(T) U! u P M(h) , u *'%(ilj.

This holds for any fixed h - 0. Suppose now that is fixed,

0 < - 1 l, and h chosen with 3 , h , h0  where h0 = h0 ) is as

in Lemma 7.2 (ii), from whence it follows that

P M(h) > uj > 9h(l+o(i) =- (+ o(1))

and hence

P{M(T) <u: ( P{M(h) u,)n +o(1)

_ ( T/n +o (11n) )n +o()

so that

limsupP{M( ) < u} < e - l T

T T

By letting 6 t 1 we see that lim sup P{M(T<)- Li e -. That the

opposite inequality holds for the lir inf is seen in a similar way,

but even more simply, from Lemma 7.2 (i) (no ;- being involved) so

that the entire result follows.

COROLLARY 7.7 Suppose the conditions of the theorem hold, and let E

= ET be any interval of length yT for a constant ¥ 0. Then

P{M(E) <u) - e - ¥ T as T - -.

PROOF By stationarity we may take E to be an interval with left end--

point at zero, so that P{t(E) 1u = P{M(YT) u u. It is simply checked

that the process n(t) = F4(yt) satisfies the conditions of the

theorem, and has mean number of upcrossings per unit time given by

Li = yw, so that u T - yT. Writing Mn for the maximum of the

result follows at once since P{M(yT) u} = P{M (T) u} - e- -
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It is now a simple matter to obtain the double exponential limiting

law for M(T) under a linear normalization. This is similar to the

result of Theorem 3.5 for normal sequences.

THEOREM 7.8 Suppose that the (standardized) stationary normal process

{,"(t): satisfies (7.1) and (7.2) (or (7.4)). Then

(7.7) P{aT(M(T) -bT) <x} - exp(-e - x ) as T

where

aT = (2 logT)
1 / 2

(7.8) *1/2

bT (2 logT)1/2 + (lo'-- -- )/(2 log T) 1/2

PROOF Write T = e- x and define

(7.9) u 2 = 2(logT+ x+ log(, 2 /2-)) 
2

so that

; = T(O1 2 /2-r) e - u 2 /2 = e- x = T.

Hence (7.6) holds. But it follows from (7.9) that

l [ + xlo+ (p1 /2/2) 1
u = (2 logT)1 / 2 ! + 2 + o(

L2 log T log T

= + b + -(al
aT T T

so that (7.6) gives PiaT (M(T) -bT) +o(1) x} e -  from which (7.7)

follows at once. a

It is of interest to note in passing that this calculation is some-

what simpler - due to the absence of a log u-term in (7.9), than the

corresponding calculation in the discrete case (cf. Theorem 1.11).

In the discrete case we obtained Poisson limiting behaviour for the

exceedances of a high level. Corresponding results hold for the point

processes of high level upcrossings under the conditions of this chap-

ter. These are readily obtained from the present extremal theory by

means of our familiar point process convergence theorem, as in the
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discrete case, resulting in a number of interesting consequences con-

cernint local maxima, length of excursions, etc. We will defer such a

discussion to Chapters 8 and 9. However, it is worth noting here that

historically the asymptotic Poisson distribution of the number of high

level upcrossings was proved first (under more restricti-e conditions)

by Volkonski and Rozanov (1961). Cramjr (1965) noted the connection

with the maximum given e.g. by

u (T) =u0 = jM(T) <uj U :Nu(T 
=
0, -(G) u,

which led to the deternination of the asymptotic distribution of M(T),

and subsequent extremal development.

Extremal results under weaker conditions at infinity

As already noted, the above extremal results may be generalized by weak-

ening of either (7.1) or (7.2). The weakening of the "local condition"

(7.1) by allowing *2 = is somewhat more complicated and will be de-

scribed in Chapter 12. For a weakening of (7.2) - describing the behav-

iour of the correlation at distant points - we may proceed by similar

means to those used in the discrete case, and we devote the remainder

of the present chapter to this, followinq Leadbetter, Lindgren and

Rootz~n (1979) and Mittal (1979). Of course we cannot expect a substan-

tial weakening of (7.2) since it is clearly close to being a necessary

condition.

Let h(t) be any functi'in and define

T (h) = (tE (0,T]; r(t) logt - h(t)
(7.10)

T(h) = ( T(h)) = Lebesgue measure of 0 T(h).

By analogy with the conditions for discrete time we will place restric-

tions on the amount of time that r(t), logt is large by requiring

that there is some non-increasing function h with h(t) 1 0 as

t f - such that
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(7.11) 2T (h) = O(T/(log T)(), for some y , 1/2,

and some constant K > 0 such that

(7.12) ZT(K) = O(T ), for some i.

Obviously the condition r(t) logt 0 as t - ', implies that ._(h)

is empty if e.g. h(t) = sup r(s), logs, so that (7.11) is actually
s>t

weaker than (7.2). In fact, (7.11) is also weaker than some other con-

ditions which have been used on occasions. For example, since,T -
°0 r(t);Pdt , ZT (h) (h(T)/ logT)p  if h is decreasing, :r r(t)dt

implies that ;T(h) = O((log T/h(T)) 2 ) for all h, so that (7.11) is

indeed weaker than the condition 0r (t)dt <-, sometimes used in

the literature.

THEOREM 7.9 Let u = uT so that T_ - T > 0, and suppose r(t) 0

as t -=, and furthermore satisfies (7.1), (7.11), and (7.12). Then

P{M(T) <u) - e- T as T - -.

PROOF By Theorem 7.6 we have only to show that q - 0 may be chosen

so that qu 0 , and (7.4) holds, i.e. for > 0,

(7.13) T E j r(kq)le -u2/(l+ lr(kq)I) * 0.
q E<kq<T

Let 5(t) = sup~r(s) , let 8 satisfy 0 < 8 < (1- (t))/(I+6(t)),
s>t T

and split the sum in (7.13) into two parts at kq , i.e. let Z'
T8

be the sum over E < kq I T and Z" the sum over T' < kq < T. Since

e - u 2 / 2 = O(1)/T

we can estimate Z' simply from the number of terms, as follows,

T ~,=T - 2
qZ =T T jr(kq) le - u  / ( + lr(kq) l)

q q Ekq T '

T . ' .e-u 2 /(l+5(-)) K Tl+_2/(
q q q2

K T 1  '"2 2 (1+ (F) lI T - 0
q 2 u

22i
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if qu - 0 slowly enough.

For the remaining sum " we need a bound on the num~ber of terms

for which (r(kq)' logkq is not bounded by a small function. Define,

for a function h,

nT (h) = #,k; T kq T, r(kq) log kq -'(kq)

(where # denotes cardinality) in analogy with ;,(h) in (7.10).

Since X 2 < - and therefore r has a bounded derivative,

jr(t +h) - r(t) < Clh,

for some constant C, and this can be used to give a bound for nT (h)

in terms of ZT(h/2). In fact, we will see that

(7.14) nT(h) < C' (log T/h(T)) )T(h/2 ),

if T is large enough. Since, for t > kq, lr(t) logt > (r(kq),! -

Cit-kq.) logkq we have that if

ir(kq)i logkq > h(kq)

and t is such that
S< t < kq + h(T)

kq 2C logT

then

Jr(t)i logt > h(t)/2.

Since u 2 logT, h(T)/2C locT - (h(T)/Ciu) • ci/u I a for large

T if qu 0 slowly enough. This implies thiat for T larje en ,

the ];a which contribute to nT(h) also contribute dis3oint inter-

vals of length at least h(T)/2C logT to T(h/2), and we get (7.14)

with C' = 2C.

We can now proceed by splitting the sum Z" according to whether

kq E eT( 2K) or not. Recalling the notation 6(t) = sup ir(s)i, we
s>t

have
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!.,+ r(kq) 2nT n(2K) e2/(1+(T
q qT' . kqi_-

T -u 2 (l-2K/!og T-)+ - ir(kat e

T" kq, 7, kqE T(2K)*

(where the denotes complementation). The first term in (7.13) is

bounded by

C' (logT/2K) Z (K)O (1)T(T + (T^)) <- (1oT T)q T- qu

Since - 1 by (7.12) and ?(T-) - 0, this bound tends to zero as

T - - and qu - 0 slowly enough.

The second term in (7.15) is bounded by

(7.16 (T) 2 e-u 2(1-2K/(2 logT)) 1 " Zi r(kq) l1 F_
( logT T l F

say, where the sum is extended over all kq such that Ti  kc T

and kq E 6T( 2K)*. We will see that F1 Imay tend slowly to infinity,

but F2 - 0 as T - - so that F1 ' F2 
- 0. We start with F2. intro-

ducing the function h that appears in (7.11) and split the sum accor-

ding to whether kq E 6T( 2h) or not, giving

F2 = r r(kq) logkq
2 T+T

T kqe T (2h)* T kq9 T (
2h)e ST (

2K)*

kq<T

S.i 2h (T'B) + 2 -2Kn,(2h)-T q T

< 2h(T ) + 2KC' 2 (logT/h(T)) T(h)

= 2h(TB) + h(T)- (log T)l-/2-Y(u) . 0(i)

= 2h(T ) + k(T)(qu),

say, by condition (7.11). Since 1/2 - y < 0, we can deduce that

k(T) - 0 as T - -, provided h(t) decreases sufficiently slowly.

Note that if (7.11) is satisfied for some function h, then it is satis-

fied for all functions which decrease more slowly. We therefore assume
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that k(T) - 0 as T . The remaining factor F, in (7.16j is sivenI

by

F1 = (1)2 2e-U2(1-2K/ ( ogT
F1  q 3log T

2Using the fact that u 2 log T + 0(1) we obtain

F1 - 0() O(1)/(qu) 2
q log T

Thus, for some C - 0,

F -F 2h(T' ) , k(T)j

1 F2  qu quj

Since k(T) does not depend on the choice of q we may choose qu - 0

sufficiently slowly so that both terms tend to zero, which completes

the proof of the theorem.

REMARK 7.10 As in discrete time, one would be inclined to consider a

condition like

(7.17) S Z lr(kq)j logkq eyIr(kq ) I logkq _ 0T kq<T

as T - , for some < 1, y > 2 which in fact can replace (7.11).

However, (7.17) contains the somewhat arbitrary spacing q, and a more

natural condition for a continuous time process would restrict the

size of

T y rrt I o ¥ ( t ) I log tat

1
:However, it is not clear how this miqnt be done, in relation to (7.17).
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CHAPTER 8

POINT PROCESSES OF UPCROSSINGS

The extremal theory of normal processes, as developed in Chapter 7, is

based mainly on the asymptotic independence of maxima over several se-

parate intervals of constant length, and on the form of the tail distri-

bution of the maximum over one such interval. In the proofs in Chapter 7

we made use of upcrossings, and of the obvious fact that the maximum ex-

ceeds u if there is at least one upcrossing of the level u. However,

as was seen already in Chapter 4, upcrossings have an interest in their

own right, and as we shall see here, in this continuous time setting,

they contain considerable information about the local structure of the

process.

This chapter is devoted to the asymptotic Poisson character of the

point process formed by the upcrossings of increasingly high levels,

and indeed, this requires only little more than is needed to obtain the

much weaker results of Chapter 7. In our derivation we shall make sub-

stantial use of the regularity condition 12 < w, which implies that

the upcrossings do not "appear in clusters" and remain separated as the

level increases. In fact, Theorems 6.7 and 6.5 imply that there are on-

ly a finite number of u-points in finite intervals. Similar resluts

will be established in Chapter 12, for the case X2 = , with regular

upcrossings replaced by so called c-upcrossings.

We shall first prove asymptotic independence of the maxima over dis-

joint intervals, and then use this result to prove that the point pro-

cesses of upcrossings of several simultaneously increasing levels tend

in distribution to a sequence of successively thinned Poisson processes.

In the case of a finite fourth spectral moment this will eventually,

in Chapter 9, give the joint distribution of heights and locations of

the highest local maxima.
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Poisson convergence of upcrossings

Corresponding to each level u we have defined = (u)

1 X-- / 2 e- 2/2 to be the mean number of u-upcrossings per time unit,
r 2

and, as in Chapter 7, we consider T = T(u) such that T,. as

u - -, where i , 0 is a fixed number. Let NT be the time-normalized

point process of u-upcrossings, defined by

T*(B) = NuM) = #iu-u~crossings by (t); t/T EB ,

for any real Borel set B, i.e. N* has

upcrossing at tT. Note that we define N* as a point process on the

entire real line, and that the only significance of the time T is that

of an appropriate scaling factor. This is a slight shift in emphasis

from Chapter 7, where we considered uT = x/aT +b, as a height norma-

lization for the maximum over the increasing time interval (0,T).

Let N be a Poisson process on the real line with intensity T. To

prove point process convergence under suitable conditions, we need to

prove different forms of asymptotic independence of maxima over disjoint

intervals. For the one-level result, that N* converges in distribution

to N, we need only the following partial independence.

LEMMA 8.1 Let a = a1 <b 1 <a 2 <...<a <b = b be fixed numbers, E.LEM .e I < a ' r r 1

(TaTb= and M(E Sup{ (t); Ta. < t < Tb S Then, under the con-

ditions of Theorem 7.6,

n {M(E ) <ul )- 7 P{M(E ) < u}-l0
i=l i=l

as u , T - T > 0.

PROOF The proof is similar to that of Lemmas 7.4 and 7.5. Recall the

construction in Lemma 7.4, and divide the real line into intervals

... I II, Ii, 2, .... of lengths h-c and c, alternately. We can

then approximate M(Ei) by the maximum on the parts of the separated

intervals I, which are contained in E Write n for the number of
r

[*'s wiich have non-empty intersection with U E.. We at once obtain
k i=l
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0 < P nM(U I k n E) < u - Pn _{4(E i ) < u}Xi=l' k 1

n P{M(I[) >

where (writing E for thie length of an interval E),
r r

n-h iE 1 2 (b- T(b-a)
= i h =1 i - h

Since Lenma 7.2(i) i.nmlies that

urn sup -Ip P{M(I,) > u <,
U--O

we therefore have

(8.1) lim sup P (PM(U Ik NEi) <u) - p n fM(Ei <uu W i=l ki1 -

< TC (b - a)
- h

Now, let q -0 as u- - so that qu -0. The discrete aDproximation of

maxima in terms of (jq), jqE U I k nEi is then obtained as in Lemma
k

7.4(ii). In fact, since there are n+ + intervals Ik  which intersect

U i  (wnere 161 < r), we have

(8.2) 0 < P n {(q) <u, jqE Ik EI - Pn M(U Ik OEi) < u}
i=l k 1 (i=l k

< E(P{(jq) <u, jqEI k E i } - P{M(Ik nE i ) <u))
k

= (n +6)o(w) = o(l), as u .,

by Lemma 7.3(ii).

Furthermore,

Sr r
(8.3) P n {(jq) <u, jqEU IknEil ) Yi _ 0

(i=l k k l

where yi = 11 P1( jq) <u, jqE Ik NE), the proof this time being a re-
k

phrasing of the proof of Lemma 7.5(i).

By combining (8.1), (8.2), and (8.3) we obtain

limrp Ii} <  
(b-a)

1 msup I P n { 11(E i) <U)h
n a i l i= i ..- ,

and in particular, for i =,..,r,
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limsup IP{M(E) <u -yi (b a)
1h

u * '

Hence, writing x i  P(tI(E.) <us, we have

im sup Pin l K(Ei) <ur - 2 PI'M(E.) u}

r r
(b- a) + lir sup i -Y - x- h u-.* i=l 1~

But, with z max yi -xi! (so that lim supz < iE(b-a)/h)
i

r r r r
y yi - < (x i +z) - xi < rz,

i=l i=l i=l i=l

with a similar relation holding with yi and x. interchanged, and

hence

r r
limsup 2 y. - xi (b -a)
U , - i=l - h

Since E is arbitrary, we have proved the conclusion of the lemma. s

1 1/2 e- U2/2 adsp

THEOREM 8.2 Let u * and T -T/U, where ui = - A 2  e /2

pose r(t) satisfies (7.1) and (7.2) (or the weaker condition (7.4)).

Then the time-normalized point process N* of u-upcrossings converges

in distribution to a Poisson process with intensitv T.

PROOF By the basic convergence theorem for simple point processes,

Theorem A.1 (see Appendix to Part I), it is sufficient to show that,

as U. - ,

(a) E(N,((a, b ])) -E(N((a, hi)) = T(b-a) for all a< b,

and

-TEr= (b a
(b) P{N,(B) = 0} - PfN(B) = 0} = e 1 for all sets B of the

r
form U (a i , b i ] , a, 1 b I < a r < br .i=1

Here, part (a) is trivially satisfied, since

E (Np (a, b E f(N (Ta, Tb) =T(b-a) - T(b-a) .

For part (b), we have for the u-upcrossings,
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P{NT(B) = 0} = P nfN((a i , b.) = 0} n N (E 0(il T1 = i1

where Ei = (Tai, Tbi]. Now it is easy to see that we can work with

maxima instead of crossinqs, since
Sr{N ) _ (ir

0 P(fl{N(E i ) = O})-P {M(Ei) ui)

n {N (Ei) = r (E )
r

< P{(Ta.) >u} - 0 as u ,- i=

and since furthermore Corollary 7.7 and Lemma 8.1 imply that

( r r r -T(bi -a)
lim fn {M(E.) < u} lim 7 P{M(E.) < u} = 7 e
u'. i=l u- i=l i=l

we have proved part (b).

One immediate consequence of the distributional convergence of NT,

is the asymptotic Poisson distribution of the number of u-upcrossings

in increasing Borel sets T.B. Since this is an important result we

formulate it as a corollary.

COROLLARY 8.3 Under the conditions of Theorem 8.2, if B is any Borel

set whose boundary has Lebesgue measure zero, then

(8.4) P{N*(B) =r} - e-T Bi(TIBI)r/r! , r = 0, It

T

as u * =, where JBI is the Lebesgue measure of B. The joint distri-

bution of N* (BI) .... N*(B n) corresponding to disjoint B (with

boundaries which have Lebesgue measure zero) converges to the product

of the corresponding Poisson probabilities. a

Full independence of maxima in disjoint intervals

A topic of some interest, which we have not touched upon yet, is the

relationship between tne intensity and the neigit u of a level
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for which T. - . If T = / = -2-.21/2 e u/2 we have
2

logy - log(2-/' 1/2
u2 = 2 log T( - 2 >

logqT

or

log -+lg(2/ l
(8.5) u= (2 log T) 1 /2 - T) 1/212 + o ((log T)- 1 /2 )/

(2 log T

However, any level which differs from u by c((log T) - / 2  will do

equally well in Theorem 8.2, and it is often convenient to use the

level obtained by deleting the last term in (8.5) entirely. (The reader

should check that also for this choice the relation T. 7

holds.) If we write

l/2 i~T + log( 2-/ 2 )1/

(8.6) u = (2 log T) - 2

(2 log T) 1/2

we have, for T >T > 0,

(8.7) uZI-U l 0,
(2 log T) 1 T

so that levels corresponding to different intensities 7, -* (under the

same time-normalization T) become increasingly close to each other, the

difference being of the order 1/u-. Note that (8.7) holds for any

UT*, uT which satisfy Tu(u_,) - -*, T,(u.) - 7, and not only for the

particular choice (8.6).

Now, let u (I ) >u (2 1 I ... _u (r ) be r levels such that the point

processes of upcrossings are asymptotically Poisson with intensities

0 < T <T 2< " under one and the same time-normalization, i.e.

TwU(i)) .:,i i =, ... ,r as u(r) . We shall prove the full as-

ymptotic independence of maxima in disjoint increasing intervals under

the conditions (7.1) and (7.2) (or condition (7.4) with u replaced by

u r) i.e.

T (UCr) 2
(8.8) q Z r(kq) e - (u ) /(I + Ir(kq):) , 0

q E<kq<T

for each E > 0, and some q - 0 such that u (r)q 0.



-42-

THEOREII 8.4 Let u ( l) > (2) > . (r) , T - 4, and suppose

=i T /2-(u (i))2/ ->0
Ti(u (i ) )  1/2 e ( /2 >

27- 2

Suppose that r(t) satisfies (7.1), and either (7.2) or the weaker con-

dition (8.8). Then, for any 0 <aa < < a 2  "' <a s b,

(Ei =(Tai,Tbi]).,

S

S Z -'(b i - a.)

(8.9) P {M(E * e\i=l i-Ti'

where each UT i  is one of u (I  
... (r) and (UT,

PROOF For proof it is enough to check that

p n { U'I)(E - T P{M(E.) <uT iu 0,

and this goes step by step as the proof of Lemma 8.1, with u replaced

by appropriate uT, i . We only have to make sure that one can use the

same grid in the discrete approximation for each level u (i), and this

is easy, since (8.7) implies that u(i)q -u(J)q 1 0 under the stated

conditions, so that u(i) q - 0 if u (r)q - 0, (cf. the proof of Theo-

rem 4.9). o

Upcrossings of several adjacent levels

The Poisson convergence theorem, Theorem 8.2, implies that any of the

time-normalized point processes of upcrossings of levels u (I ) '... Cu(r)

are asymptotically Poisson if Tp(u(i) ) Ti > 0 as T, u (i) .. We1

shall now investigate the dependence between these point processes,

following similar lines to those in Chapter 4.

To describe this dependence we shall represent the upcrossings as

points in the plane, rather than on the line, letting the upcrossings

of the level u U ) define a point process on a fixed line L. as was

done in Chapter 4. However, for the normal process treated in this
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chapter the irnes ,  r s Cnh-en t a' a ve.' s:_C: cr#,-

lation to the process itse.f y , i. z the process

(t) a- r tT) - _

where time has been noraui zed :7: a factor T and :.en ii ."

a- = (2 loT()

0- = (2 lo'q /2 lo lo/2/27)/(2 loq T 1, 
2

as usual.

Now, -T 't = x if and only if :(tT) = x/a T +T, and clearly the

mean nummer of upcrossings of the level x by .-T(t) in an interval
Tb 1 /22

of lengtn h is e ual to 2 ex (-(x/a - hT42 /2, which y (8.6 ,

equals n:(l +o(1)) as T - , witi = e . Therefore, let x. X 2

x 'x be a set of fixed numbers, defining horizontal lines L , L ,

L, anu consider the point process in the plane formed by the-

crossings of any of these lines by the 2rocess rT(t) . Here the depen-

dence between points on different lines is not quite as simple as it

was in Chapter 4, since, unlike an exceedance, an upcrossinc of I no

level is not an upcrossing of a lower level and there may in fact e-en

oe more upcrossings of the higher than of the lower level; see the fol-

lowing diagram, which shows the relation between the upcrossings of le-

vels u(i) = xI/aT. bT  oy :(t), and of levels xi  by -T (t). As is

seen, local irregularities in the process ,(t) can cause the appear-

ance of extra upcrossings of a high level, not present in the lower ones.

U2  -I

-

A 
V

V T 0- 
4

X3j jI I --
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Let N denote the point process in the -..e formed by the upcross-
in;s of the fixed levels x ' 2  x r by the process Tt)

r TT r --

N ( , so that

N N(B) :upcrossinqs ir, b of r y T

rl '

N .T (B n Li)
2

for arbitrary Borel sets B R2 .

We shall now prove that N* converges in distribution to a pointT
process N in the plane, which is of a type already encountered in con-

nection with exceedances in Chapter 4. The points of N are concentrated

on the lines L , . ... Lr  and its distribution is determined by the joint

distributions of its comoonents N ( I )
, N (r) on the separate lines

L1 , ...,I L r "

Let, as in Chapter 4, f-lj; j = 1, 2, .... be the points of a Poisson

process N (r ) with parameter Tr = e on L . Let Bj, j =1, 2,...
r)

be i.i.d. random variables, independent of N(r), with distribution de-

fined by
p{2.= s} = (T -T )/ , s =l, .., r-l,

Sj r-s+l r-s UTr ""

= TI/T, s =r,

so that P{j i >s} = r-s+i r for s=1,2, .... r.

Construct the processes N (r - l), . ., N ( I ) by placing points 72ith .- 1lie - , o .

n 3 - jj r rl+' vertically above

j 1 j = 1, 2, ... , and finally define N to be the sum of the r pro-

cesses N
(I )

, ... 'N

As before, each N (k )  is Poisson on Lk, since it is obtained from

the Poisson process N (r) by independent deletion of points, with de-

letion probability 1 -P{Bj > r -k +1) = 1- T k/Tr, and it has intensity
Tr(-k/t r) = . Furthermore, N(k) is obtained from N K + l ) by a bi-

r k r k*

nomial thinning, with deletion probability 1 - Tk/Tk+l. Of course, N

itself is not Poisson in the plane.



When proving the main result, that N* tends in distributicr. t N,

we need to show that asymptotirally, there are not more upcrossin,;s )f

a higher than of a lower leveI. NtZ a conveni-nt abiLase r ntlt ir., 'r-,

(i)() for the number of points of NW wth time-coordinate in 1.T T

LEMMA 8.5 Suppose xI  x., and consider the point processes N and

N (j ) of upcrossings by :T(t) of the levels x. and x, respectiveiy.

Under the conditions of Theorem 8.2,

PN T  (I) >N (I)k - 0

as T , for any bounded interval I.

PROOF By stationarity it is sufficient to prove the lemma for I =(0,11.

Let I ( , -], k=l, .... n, for fixed n and recall the notation

(8.6): u = x./aT+bT' =e j. Since, 1.y Theorem 6.7 all crossings3 ' )

are strict, the event 14i (1) NT (I) implies that one of the eventsLT

n kT
U { (-) >u

k=0 n

or

U {N T (I k )  2)
k=l

occurs, so that Boole's ine-uality and stationarity give

n(i) (n) P (i)P{N (i(I) > NT ( ) } < L P ( ) > u I + P(NT i(Ik 2}
T T - k=0 n j k=l -

= (n+ l)P1-(0) > u- + nP;N i) (1 2
T i-

Obviously, (n+ l)PV,(0) - u, - 0, while by Corollary 8.3,

({ i) 2- 1 i /n1 - i T T i / nP{N T) (1f _1 2) 1 1 - e W-e

which implies

lir sup PfN i) (I) > N j ) (I) 1 < n(l - e Te-T i)
T- T n



-46-

Since n is arbitrary and

n ( e__ /n _- e _/

n

as n > 0), this proves the lerma. a

THEOREM 8.6 Suppose that r(t) satisfies (7.1) and (7.2) (or, more

generally (8.8)) , let -i - 2 1 *- - k be real positive numbers, and

let N; be the point process of upcrossings of the levels xl >x2 > ...-xi

x (r . =e by the normalized process T(t) =aT ( (tT) -bT) re-

presented on the lines L1 ... Lr' Then, as T - -, N. tends in

distribution to the point process N in the plane, described above, with

points on the horizontal lines Li, i = 1, ... , r, generated by a Poisson

process N (r ) on Lr with intensity - r' and a sequence of successive

binomial thinnings N W with deletion probabilities 1 - Tk/Tk+l,

k=l ... , r-l.

PROOF This follows similarelines as the proof of Theorem 4.11, in that

one has to show that

(a) E(N.(B)) -E(N(B)) for all sets B of the form (a, b I ()t, ] 1

0 < a < b, a < E, and

(b) P(N* (B) = 0f -P(N(B) = 0} for all sets B which are finite unions

of disjoint sets of this form.

Here, if B = (a, b ] ( c, 8 1 and (a, 8] contains exactly the lines

L, • Lt ,

t W t t
E(N',(B))E =E N T((a, b I = Z T(b-a)u(u ) ) * (b-a) Z Tk

\k=s Tk=s k=s

= E(N(B))

so that (a) is satisfied.

To prove (b), as in the proof of Theorem 4.11 write B in the form

m m Jk
B= U Ck= Ul(ak, bk] U (0kj' 8 kJ

k-1 k-I ji.1



-47-

where (ak,bk ] and (a,bi] are disjoint for k . .. For each k, iet

mk  be the index of the lowest L that intersects C i.e.

L n Ck *0, L. N Ck= for j >mk. Then clearly, if NT ((ak, b ) ='o

then either NT (Ck) =0 or there is an index i m rk such that

((a b 1) >0, i.e. in (ak, b there are more upcrossings of aNT Ha' k"'

higher than of a lower level. Since obviously N (C) =0 imlies
(ink)

NT ((a. ,b, ]) = 0,imle

0 P(kl{NTk ((ak,bk ]) = 0) - PNT(B) =01- 0,

since the difference is bounded by the probability that some higher

level has more upcrossings than a lower one, which tends to zero by

Lemma 8.5.

But

(Mk)
{NT ((ak , bk) = 0}nT(ak) x m} = M((TakTbk) uT,k-

where uT,k = mk /aT + bT, so that Theorem 8.4 implies that

P ( m (m k )  ( a ' m
him P(N {N k)ak~bk]) =0 lim P ( n 'M((Tak, Tbkl) U
T- k=l T- k=l

m -T'(b
-:e k k-k)= e

-x k=l-m k
where rk  m Clearly this is just PiN(B) =0}, and thus

the proof of part (b) is complete.

COROLLARY 8.7 Let (V(t) } satisfy the conditions of Theorem 8.6,

and let B1 , ..., Br  be real Borel sets, whose boundaries have Lebesgue

measure zero. Then, for integers m. k )

] I

) (k) (B .. . s, k~ l, • r}

PN (k) (Bj =, k ) ,j . . . s, k =1,. .. r}.
) )

For example, for disjoint B1 and B2,
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T- ( ) ( M 1 ), NT(I) (B2) , N (B2) (2 ),

m ) N(2)
-.eT1 B1I (. 1 B e) -T21B 2 I (T21B 2 1) 2

1 m 2)

.(M (1) (2) -m(1)
(2.. ( )m 2  ( T /T , III)2 2

M( 2 1I



CHAPTER 9

LOCATION OF MAXIMA

So far, we have examined the extremal properties of a continuous process

F(t) by sections at certain (increasing) levels. Even if this gives

perfect information about the height of the global maximum of the prc-

cess, it does not directly tell us where this maximum occurs or how it

is related to possible lower loca maxima.

The maximum of (t), 0 < t < T, is certainly attained at some point

in [0,T]. However, the maximum level may be reached many times, or

even infinitely often. But there will - by continuity of i(t) - be a

first occasion on which c(t) attains its maximum in [0,T], and we

denote this by L(T).

We state tne first result concerning L(T) as a lemma, though it is

rather obvious.

LEMMA 9.1 L(T) is a r.v. For 0 < t < T, P{L(T) <tl =

= P{M(0,t) >M(t,T)}.

PROOF Both statements follow from the equivalence of the events

{L(T) <tI and {M(O,t) >M(t,T)}, the latter being measurable since

M(0,t) and M(t,T) are r.v.'s. a

The distribution of L(T) can have a jump at 0 end at T as

simple examples (such as the process (t) = A cos (t - ) with T < 2-)

show. However, a simple condition precludes the possibility of any

other jumps in the distribution of L(T), and this is generally satis-

fied except in "degenerate" or "deterministic" cases.

Specifically we will say that 7(t) has a derivati:)e 'r.

at t0 if there exists a r.v. n such that

(t0 +h) - r(t 0 )
S nin probability as h - 0.

Clearly if C has a q.m. or probability-one derivative, it has a de-

rivative in probability (with the same value).



THEOREM 9.2 Suppose that e(t) has a derivative in probability at t

(where 0 ' t - ), and that the uistribution of this derivative is

continuous at zero. Then Pr L(T) =tl = 0.

PROOF Let n denote the derivative in probability at t. Clearly

L(T) =t c (t) - n(t -h) o 0 -(t+h)
:,L{(Tt -tf(tt) -h) > 0}

-h -h-

for all h > 0 such that 0 < t - h and t + h < T.

Now ((t +h) - "(t))/h -n in probability as h 0 and there

exists a sequence {hn} such that (F(t +hn) - E(t))/h h  q with prob-

ability one. By considering a subsequence of h n } we may also arrange

that ( (t -h ) - "(t))/(-h n) - n with probability one, i.e. on a set

B with P(B) 1. We see that r; = 0 on {L(T) =t} n B, i.e.

{L(T) =t} n B c { = 0, and hence

P{L(T) =t} <P({L(T) =t! n B) + P(BC) < P{ =0} + P(Bc) = 0,

when n has a continuous distribution. 0

Turning to stationary processes, one may be tempted to conjecture

that if 1(t) is stationary, then L(T) is uniformly distributed

over (0,T). For example this is so if 1(t) = A cos (t - ), with ¢

uniformly distributed over (0,2i], for T = 27r. (If A is Rayleigh

distriuuted and independent of ¢, (t) of course is normal.)

If T < 27, there is a positive probability of L being 0 or T,

and L(T) is not strictly uniform. However, its distribution is still

uniform between 0 and T as a simple calculation shows.

In general, however, L need not be uniform in the ooen interval

(0,T), not even if C(t) is normal and stationary. As an example of

this, let q' 2' A1, and A. be independent, with 0i and ¢2 uni-

form over (0,271, and with A and A, Rayleigh distributed, and put

(t) = A 1 cos (t -1 ) + A2 cos (loot - 2) Then (t) is a stationary

normal process, and (e.g. by drawing a picture) it can be seen that if

A1 < A2F 1 E (3'a/2,2mi], and 2 E (r/4,3r/4) then the maximum of



(t) over [0,7/2] is attained in the interval (0,7/100]. Hence
PL(/2) < >/00 PA 1 <A 2 , 3-12' ; 2

-, 7/4 < 2 3-7/4} =

= (1/2) (1/4) (1/4) = 1/32 > 1/50 = (7/100)/(7/2), and L(r/2) can not

be uniform over (0,7/2).

However, for a stationary cr"> process the distribution of L is

always sjymetp g in the entire interval [0,T], and possible jumps at

0 and T are equal in magnitude. This follows from the reversibility

of a stationary normal process in the sense that {.(-tl } has the same

distribution as { (t)}.

One method of removing boundaries, like 0 and T, is to let them

disappear to infinity, and one may ask whether L = L(T) might be as-

ymptotically uniform as T - -. For normal processes, this is a simple

consequence of the asymptotic independence of maxima over disjoint in-

tervals, as was previously mentioned. We state these results here, as

simple consequences of Theorem 8.4.

THEOREM 9.3 Let {f(t)} be a stationary normal process (standardized

as usual) with A2 < -, and suppose that r(t) log t - 0 as t -.

Then,

P{L(T) <.T} - k as T - (0 < Z < 1) .

PROOF With the usual notation, if 0 < Z < 1, *. = 1 - £, and

XT = (M(0,9T) -b£T),

YT a Z*T(M(kTT) -bi*T)'

where a's and b's are given by (7.8), then

P{XT <x, YT y } - exp{-e-x -e-Y}

(x 0, y >0) as T - -. Furthermore

P{L(T) < ,TI = P{M(0,£XT) >M(9T,T) }

= P{X - YT >aT(b b
T a9T T- ZT k *TbPT



where a;$T/a;T I 1 and aT (b.T -b;T) logr./'j. As T

above probability tends to

PrX-Y > log"*/,.

where X and Y are independent r.v.'s with common d.f. exl(-e-x

and an evaluation of this probability yields the desired value '.

teight and location of local maxima

One consequence of Theorem 9.3 is that asymptotically the global maxi-

mum is attained in the interior (0,T) and thus also is a local maximum.

For sufficiently regular processes one might consider also smaller, but

still high, local maxima, which are separated from L(T).

We first turn our attention to continuously differentiable normal

processes which are twice differentiable in quadratic mean.

In analogy to the development in Chapter 4, we shall consider the

point process in the plane, which is formed by the suitably transformed

local maxima of C(t). (Note that since the process (t) is continuous,

the path of a (rgt) -b ) is also continuous, and although its visits
T , T

to any bounded rectangle B C R2 are approximately Poisson in number,

they are certainly not points.)

Suppose C(t), 0 ! t < T has local maxima at the points si with

height (si). Let aT and bT be the normalizing constants defined

by (7.8), and define a point process in the plane by putting points at

(T-1sil aT ((s i ) -b T)). We recall from Chapter 8 that asymptotically

the upcrossings of the fixed level x by aT( (t) -bT) form a Poisson

process with intensity T = e- x when time is normalized to t/T, and

that an upcrossing of a level x is accompanied by an upcrossing of

the higher level y with a probability e-Y/e - x = e- (y -x)
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When investigating the Poisson c:,aracter of local maxima, a question

of some interest is to what extent high level uocrossings and high local

maxima can replace each other. Obviously there must be at least one lo-

cal maximum between an upcrossing ol a certain level u and the next

downcrossing of the same level, so that, loosely speaking, there are at

least as many high maxima as there are high upcrossings. As will now be

seen there are, with high probability, no more. In fact we shall see

that this is true even when T + in such a way that Ti =

= T - 1/ 2 e-U2/2 converges.

First recall the notation from Chapter 6,

4u'(a,b] = #{si E (a,b]; (s i ) >u},

N'u(') = N' (O,T].u 1

LEMIA 9.4 If A < and T - T/ = - 27 X2
1/2 eu 2/2, then

(i) E (Nu ( ))

and

U(ii) P{ Nu(T) -Nu(T) I > i} 0

as u - ..

PROOF First note that at least one of the following events occur,

{Nu'(T) Nu(T)} or {((T) >u}

and that in the latter case, Nu(T') > N u(T) - 1. Therefore

P{ Nu(T) -Nu (T) >l} < E(]N'(T) -Nu(T)I)

E(N'(T) -Nu (T)) + 2P{ (T) >u},

uu

and since L(Nu (T)) = T and P{(T) >u} - 0, (ii) is a direct conse-

quence of (i). But E(Nu(T)) is given by (6.18) where we can use

1 - (x) - W x)/x as x * , so that for some constant K,



T /( 1/2 T 4( '11
(uu2 2 -)l, _-__ K 2 K

while

T ( 4\\l/2 (2 I /2 ( 2T t -- 24-4 , (u) (u 2 l/2) )

2 4

2

T 1/2 e-u2/2=- A 2  e (il+o(i)) -

as u , which proves (i).

THEOREM 9.5 Suppose the standardized stationary normal process : (t),,

has continuously differentiable sample paths and is quadratic mean

differentiable (i.e. X4 < ), and suppose that r(t) logt - 0 as

t *. Then the point process N' of normalized local maxima (si /T,

aT((s i ) -bT)) converges in distribution to a Poisson process N' in

the plane with intensity measure equal to the product of Lebesgue mea-

sure and that defined by the increasing function -e-X

PROOF By Theorem A.1 it is enough to show that

(a) E(Nj(B)) - E(N'(B)) = (b-a)(e-' -e - ) for any set B of the form

(a,b] x (oE], 0 e a < b, at < 3, and

(D) PfN'(B) =0 - PIN'(B) =0; for sets B which are finite unions of

sets of this form.

To prove (a), we use Lemma 9.4 (i). Then, with u ( I )  a +(• = a + bT'

(2) j 

T

u =- +baT T,

E(NA(B)) = E(N' (2 ) (TaTb)) - E(N' (1) (TaTb))
u u

* (b-a)e - - (b-a)e- = (b-a) (e- -e-)

since Tw(u ( i ) ) . e - , e for i = 1, 2.

Part (b) is a consequence of Lemma 9.4 (ii) and the multilevel up-

crossing theorem, Theorem 8.6. Let N (I), as before, denote the numberu



of u-upcrossings by (t), t E I, and write the set B in the form

U Ej ~'F., where E. = (alb.i] are disjoint and each F. is a finite

union of disjoint intervals. Suppose first that there is only one set

E., i.e. B = E x U Gk, where Gk = (-k' k, and write u (2k- 1) =

= 3k/aT + b, (2k= ak/aT + bT. According to Lemma 9.4 (ii) asymp-

totically every upcrossing of the high level u is accompanied by one

(and no more) local maximum above that level, and hence

PN (E -Gk) = 0; = PN' (2k) (TaTb) =N' (2k-i) (Ta,Tb) '
u u

= PfN (2k) (TaTb) =N (2k-l) (TaYb), + o(l).
u u

By Theorem 3.6, with T 2k = e , T2 k-l = e k

PiN (2k) (Ta,Tb) =N (2k-I) (Ta,Tb)l}
u u

-T 2 k(b-a) (T2k(b-a))] Tl J
7 e

j=0 J! 2k

-(T2k T2k-l)(b-a) -(b-a)(-e k -(-ek
=e =e

PIN' (E x Gk) =0}.

By slightly extending the argument we obtain

P{N (E x U Gk ) =0} = P u(2k) (TaTb) =N(2k-) (Ta'Tb) o()
k k k u (2)U(k1

-(b-a) (eI e-ak )

k

= P{N' (E U G k) =0},

k

and we have proved part (b) for sets B of the simple form B =

E x U Gk. The general proof of part (b) is only notationally more com-
k

plex. 0



Location of the largest maxima

The limiting Poisson process in Theorem 9.5 has exactly the same Cis-

tributions as that in Theorem 4.17 for 7(t) normal, since log S(s)

= -e- in this case. This means that all consequences that can be

drawn from that theorem about asymptotic properties of the normalized

point process an ( i -b n) also carries over to the normalized point

process of local maxima aT(:(s i ) -bT).

As an example we shall use Theoren 9.5 to give the simultaneous dis-

tribution of location and height of the two largest local maxima of

(t), t E (0,T]. Let M1(T) be the highest and M2 (T) the second

highest local maximum, and LI(T), L2 (T) their location.

THEOREM 9.6 Suppose 7(t)) satisfies the hypotheses of Theorem 9.4.

Then

(9.1) PlaT(MI(T) -bT) X, LI(T) : iT, aT(M 2 (T) -bT) < x2 , L2 (T) < Z2T-

x2  - 2  -X 1

i'2 e (1 +e -e

as T - ,for 0< Z,1 x < x I .

PROOF The asymptotic distribution of the hi~ts of the two highest

local maxima,

P(aT(M1(T) -bT) <xI, aT(M 2 (T) - bT) x2

e-2 e-x 2  -xI
ee (il+e -e ),

is a direct consequence of Theorem 4.14, formula (4.20), and the obser-

vation above that the limiting point process of normalized local maxima

(si/T, aT( (si ) -bT)), 0 < s, I T, is the same as that of a normalized

sequence of independent normal r.v.'s (i/n, an(i - bn)) , i =1, ... ,n.

But also the location of the local maxima can be obtained in this

way. Suppose e.g. ki 1 <2' and write I, J, K for the intervals

(0,kIT), (kIT,Z 2T), (Z 2T,T), respectively. With u (1) = x1 /a T + bT'



S

_(2)

U = x 2/aT 1 T  the event in (9.1 can be expressed in terms rf tne

highest and second nig hest local maxima over I, J, K as

M 1 () U) (l M2 (I) , U(2) M1(J ) , u ( 2 )  M1(J) 1M1(J):MI u , -- , , (J

M (K) -M2 (1 U

and the limit of the probability of this event, when expressed in terms

of the point process N of local maxima, is again the same as it

would be for the point process of normalized independent r.v.'s. For

such a process obviously L1 (T)/T and L2 (T)/T are independent and

uniformly distributed over (0,I) and independent of the heights of

the maxima, which proves the theorem.

Maxima under more general conditions

We have investigated the local maxima under the rather restrictive as-

sumption that r(t) is twice differentiable (in quadratic mean), i.e.

4 =" If , = the mean number of zeros of p'(t) is infinite, by

Rice's formula, and in fact infinity close to every local maximum there

are infinitely many more, which precludes the possibility of a Poisson

type limit theorem for the locations of local maxima.

One way of getting around this difficulty is to exclude from further

considerations a small interval around each high maximum, starting with

the highest. To be more precise, let

A 1(T) = sup{ (t) ; t E (0,T) j

be the global maximum, and

LI(T) = inf(t ?0; C(t) =MI(T)}

its location. For E > 0 an arbitrary but fixed constant, let I1 =

= (0,L1 (T) -E)U(L1T) +E,T), and define



(T) = sup<(t); t E I

L £(T) = jnfit E If; ,(t) (T)

Proceeding recursively, with

k I k-1 n [L ,E (7) - , (T) +1,)c

we get a sequence Mk, (T), Lk, (T) , MI,F(T) =Il(T), LI,F(T) = L1(T) of

heights and locations of a-mi mz"a, and there are certainly only a finite

number of those in any finite interval. In fact, it is not difficult to

relate these variables to the point processes of upcrossings (in the

same way as regular local maxima can be replaced by upcrossings of high

levels if A4 < 00) and thereby obtain the following Poisson limit theo-

rem, the proof of which is omitted.

THEOREM 9.7 Suppose ;(t)} is a standardized normal process with

2 < 0 and with r(t) logt - 0 as t - -. Then the point process

N() of normalized E-maxima (L, (T)/T, a (M (T) -bT)) converges
T iE T i'E T

in distribution to the same Poisson process N' in the plane as in

Theorem 9.5.

Note that the limiting properties are independent of the E chosen.

We shall return to processes with even more irregularity in Chapter 12.



CHAPTER iC

SAMPLE PATH PROPERTIES AT UPCRoSS:NGS

Our main concern in previous chapters has been the distri-zoon :f the

number and location of upoross:ns of one or several adacent levels

and of high local maxima. For instance we know from Theorer 3.E and

relation (8.7) that for a standard normal process each upcrc ssng

the high level u = u with a probability p = -*!: is accompaniec

by an upcrossing also of the level

u - log p
U

asymptotically independently of all other upcrossings ot u and .

In order to throw further light on the conclusions and proofs in

previous chapters we will now introduce some new concepts which give

more precise information about the structure of the sample paths of

fZ(t)} near upcrossings of a level u. Perhaps a word of warning :s

appropriate here, that we will need some slightly more difficuLt argu-

ments that have been encountered so far.

We assume, as we did in Chapters 7 -9, that ,(t) is a stationar'
2

normal process with E(j(t)) = 0, E(2 (t)) = i and covariance function

r(-) satisfying

(10.1) r(t) = 1 - /2 + o(- 2 ) as - 0.

With a slightly more restrictive assumption,
-a

(10.2) -r"(T) 2 + 0( logl t ) as r - C

for some a >, we can assume that {,(t) } has continuously differen-

tiable sample paths - see Cramer and Leadbetter (1967), Section 9.5 -

and we will do so since it serves our purposes of illustration. We also

assume throughout this chapter that for each choice of distinct non-zero

points s....... sn' the distribution of E(0) ' r'(0), (s 1), ) (

is non-singular. (A sufficient condition for this is that the spectral
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the behaviour of the i-process in the immediate vlcinity of its .

u-upcrossing tk. Of course, any of the marks, say : 0(t,

perfect information about all the upcrossings and all other mary.s, s:

different i7k (t) i are totally dependent.

The marks are furthermore constrained by the requirement that t,

is the first upcrossing of u after zero, t2  the second and so on,

which suggests that the different marks .... (t), (t)

are not identically distributed.

One would feel inclined to look for the distribution of the mark at

an arbitrary upcrossing without respect to its location. Intuitively,

the distribution of n k (t) is the conditional distribution of the pro-

cess at time tk + t given that there is an upcrossing of the level

u at some time t,. Two difficulties are involved here. One is, asK

was previously noted, that the marks are not identically distributed,

which is somewhat incidental and due to the choice of time origin. The

other difficulty is that the event that there is an upcrossing of u

at t has probability zero if t is a fixed point. It is therefore

not at all clear how one should define the conditional probabilities.

In point process theory, the abovementioned difficulties are resolved

by the use of ?PL-a d 3:routors (or ?or nec2rs), which formalize the

notion of conditional distributions given that the point process has a

point at a specified time T. We shall use a similar approach here to

obtain a Palm distribution of the mark at an arbitrary upcrossing, and

then examine this distribution in some detail.

Palm distributions of the marks at upcrossings

The point process Nu on the real line formed by the upcrossings of

the level u by Jr(t)i is stationary and without multiple events,

i.e. the joint distribution of Nu (t +I I), j =1, ..., n does not depend

on t, and N (Ht) is either 0 or i; (here t +I. is the set I.u J J
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The Palm dtstributions P f the mark - ht) for any ir.ecer

are jiver ny

Stk (C ) ; .tk. s y , . n

k r'tk  -[ , .
E ~t r '0,1:

and tht int Palm dstrihutio of VA t td (-.- } s

s m L La r 1 y

Relation (10.3; defines a consistent family of finite-dimen-icnal ts-

tributtons for a certain stochastic process, whish will be studied in

nore detail later in this chapter. But first we give some more Connec-

tions between Palm dis'ributions and the marks at -pcrossinqs.



Palm probabilities can also be obtained as limits of ordinary condi-

tional probabilities given a point, i.e. an upcrossing, not exactly at

0, but somewhere nearby. Let t0  be the last u-upcrossing for 7,t)

prior to 0. Then

P uJ 0 (sj) <y, j =1, , n}

(10.4) = lim Pi <(t0 +s) <Y., j =1, ..., n -h e tO 0O,
h O

where it may be shown that the limit (10.4) exists, and equals the ratio

(10.3). In fact, (10.4) can be taken as a definition of the Palm distri-

butions, an approach which was taken by Kac and Slepian (1959), who

also termed it the horizontal window conditioning of crossings, indi-

cating that the sample path (t) has to pass through a horizontal

window {(t, u); -h < t < 01. This is in contrast to :'ertica u-'jo'

conditioning which requires that u < (0) < u+h, )' (0) > 0, so that

the process has to pass through a vertical window {(0, x); u < x < u+h

with positive slope.

The following important proposition relates the Palm distribution to

the empirical distribution of the values of ,(tk + t) when tk runs

through the set of all upcrossings of the level u. It states that the

Palm distributions in an ergodic process can actually be observed by

considering the marks over an increasing interval.

PROPOSITION 10.2 If the process { (t)} is ergodic, then with

probability one

P0{ fn (S ) yj, j if . .... n1

#{ftk  E (0, T); (tk+ + s yi, j = 1 ..... n1

(10.5) = lim #{t E (0,T)I
T - k

The convergence of the empirical finite-dime,-.sional distributions in

(10.5) to the Palm distributions can be extended to empirical
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distributions of functionals such as the excursion time, i.e. the time

from the upcrossing to the next downcrossing of the same level, or the

maximum in intervals of fixed length following the upcrossing, i.e.

sup &(t k +t).

tEI

For a proof of Proo3ition 10.2 as well as generalizations and examples,

see Lindgren (1977).

In the introduction we suggested the interpretation that the Palm

probability P u (n(t) <y} gives the distribution of {f(t)h at time

t later than the v-th upcrossing after an arbitrary upcrossing. For

this to make intuitive sense, the Pu-distribution of fn (tW should
0V

not depend on v. The following theorem makes this precise.

THEOREM 10.3 The sequence of marks fn0 (t)}, fnI(t)J, ... is station-

ary under the Palm distribution Pu, in the sense that the joint finite-

dimensional Pg-distribution of

"k + k l j ) ( sj ) , l = i . .... n

is independent of k. In particular, for a fixed t, all the n I(t),

j = 0, 1, ..., form a stationary real sequence, and hence have the same

P0-distribution, whereas they are non-identically distributed under P.

PROOF We only show that, under P., the distribution of ni(t) is the

same as that of n,_l(t). A full proof is only notationally more compli-

cated.

Put w = E(N u(0,1)) = E(#{tk E (0,1)). Then

Pu (t) <yJ = -I E(# t E (0,); (t +t) <y))
0k k+j ~I

(10.6) (PT)I E(#{tk E (0,T) ; I(tk~j +t) <y1).

Similarly,

(10.7) P'{rjnl(t) <y} = (PT) IE(#(tRE (0,T); (tk+l +t) , y1).



Now take a pair of adjacent points tk and tk+ I. We see that tk is

counted in (10.6) if and only if

tk E (0,T) and 1(t + t) yk k+j

while tk+ 1 contributes to (10.7) if and only if

tk+1 6 (0,T) and [(tk+l+jl + t) < y,

i.e. if and only if

tk+l (0,T) and (tk+j +t) I y.

Hence the numbers in (10.6) and (10.7) differ at most by +1 or -1 so

that

~ nj-(t) <_ _ - u <1 }(t) y << - 0 as T . .

The Slepian model process

We will devote the rest of this chapter to a study in more detail of the

properties of any of the marks under the Palm distribution, in particu-

lar as the level u gets high. In view of Theorem 10.3 all !"k(t):

have the samae P0-distribution and we pick 1-i0 (t), as a typical re-

presentative.

Our tool will be an explicit representation of the PU-distribution
0

of T0(t) in terms of a simple process, originally introduced by D.

Slepian (1962) and therefore in this work termed a rlcpian modol process.

The following theorem uses the definition of Palr distributions and

forms the basis for the Slepian representation.

I -- u 2/2
THEOREM 10.4 Let i = E(N (1)) = V-IA_ e Then for t * 0,

u2

(10.8) P0{0 0 (t) yl = f f z p(u,z) p(xIu,z) dz dx,

x=- z=0

where p(u,z) is the joint density of &(0) and its derivative F'(0),

and p(xlu,z) is the conditional density of ,(t) given E(0) = u,



;' (0) = z. Thus the Po-distribution of o(t) is absolutely continuous,

with density

-i I zp(uz)p(xu,z)dz.
z=0

The n-dimensional Po-distribution of no(S 1), ... , o (sn ) is ob-

tained by replacing p(xiu,z) by p(xI , .... Xnlu,z), the conditional

density of (s I )  ..... (s n )  given F(0) = u, r'(0) = z.

PROOF The one-dimensional form (10.8) is a direct consequence of Lemmas

6.9(iii) and 6.10, since we have assumed that (0) and (t) have a

non-singular distribution. We can take c(s) = (s), C'(s) =

n(s) = (s +t) and, in the same way as in the proof of Lemma 6.11,

check that

P{;(t) =u, n(t) =v for some t E(0,1)i = 0

so that

E(Nu (1)) = 0 zp(u,z)P{ (t) <y (0) =u, '(0) =z)dz
z=0

y
= f I zp(u,z)p(xlu,z)dz dx.

x=-- z=0

The multivariate version is proved in an analogous way.

Theorem 10.4 states that the joint density of n0(s I), . . 0(sn)

under Pu is given by
0

-ilo
(10.9) u f zp(u,z)p(X1  ..... xn lu,z)dz,

z=0

where p(xl, .... xnlu,z) is the conditional density of .(s . (sn )

given C(0) = u, '(0) = z. We shall now evaluate (10.9) in order to

obtain the Slepian model process.
=1 1/2 e-U2/2

With A 12  e and using the fact that p(0) and '(0)

are independent and normal with E(C'(0)) = 0, E( '(0) 2) = A 2 we have

that



(u, Z) e -  z 2
2

and we can write (10.9) in the form

-z 2/2A 2

(10.10) J, e p(x I, Xn u,z)dz.

The covariance matrix of (0), "'(0) , 1 (sI) ... (Sn) is

1 0 r (s I ) . .. r (s n

0 2 -r'(s I ) -r' (sn)

r(s 1 ) -r' (s 1 ) 1 r(sn-S)

Sr(s n ) -r'(s n) r(sl-sn) ... J

From standard properties of conditional normal densities - see Rao

(1973) , p. 522 - it follows that p(x1 , ..., xnlu,z) is an n-variate nor-

mal density and that

(10.11) E( (si)0(o) =u, .'-(0) =z) = ur(s i ) - zr'(si)/X2

and

(10.12) Cov( (si), (s.)1(0)=u, ,'(0)=z)

= r(s i -s.) - r(si)r(s j ) - r(sj 2 .

The density (10.10) is therefore a mixture of n-variate normal densities,

all with the same covariances (10.12), but with different means (10.11),

and mixed in proportion to the Rayleigh density

-z 2/2A2

(10.13) )7 e (z ; 0).

2

Now we are ready to introduce the Slepian model process. Let be a

Rayleigh distributed random variable, with density (10.13) and let



-,(t), t ER: be a non-stationary normal process, independent of

with zero mean, and with the covariance function

r,(s,t) = Cov(' (s) , (t ) = r(s-t) -r(sjr(t -r' (s r' (t)/ 2"

That this actually is a covariance function follows from (10.12).

DEFINITION 10.5 The process

(10.14) Cu(t) = ur(t) - ;r'(t)/X 2  + v(t)

is called a Slepian model process.

Obviously, conditional on " = z, the process (10.14) is normal with

mean and covariances given by the right hand side of (10.11) and (10.12)

respectively, and so its finite-dimensional distributions are given by

the densities (10.10).

THEOREM 10.6 The finite-dimensional Palm distributions of the mark

{ 0 (t)} and thus, by Theorem 10.3, of all marks {nk(t), are equal to

the finite-dimensional distributions of the Slepian model process

u(t) = ur(t) - r' (t)/ 2  + -(t)

i.e. Pu{ ( ) EB., j =i ... n} P(u (s) EB, j =I .... n . C
0 U j 'uj

One should note that the height of the level u enters in u(t)

only via the function ur(t), while the distributions of C and K(t)

are the same for all u. This makes it possible to obtain the Palm dis-

tributions for the marks at crossings of any level u by introducing

just one random variable and one stochastic process { (t)j . In the

sequel we will use the fact that u enters only through the term urit)

to derive convergence theorems for F u (t) as u - -. These are then

translated into the distributional convergence under the Palm distri-

bution P0, by Theorem 10.6, and thus of the limiting empirical distri-

butions by Proposition 10.2.



As noted on p. the same reasoning applies to the limiting em-

pirical distributions of certain other functionals. In particular, tihis

applies to maxima, and therefore it is of interest to examine the

asymptotic properties of maxima in the Slepian model process.

Some simple facts about the model process ru (t) : should be men-

tioned here. From the form of the covariance function r. one may show

that {(t)} is continuously differentiable with

h(K (t) ) = E(, ' (t) ) = 0

E(sc(0) 2 M E( '(0) 2 )  = 0

so tnat PI> (u) =.' (0) =0; 1. Since 2 = -r"(0) one has

'(0) ur'(0) - r" (0)/ 2 * K'(0) ="u

so that I is simply the derivative of ' (t) at zero. From Theorem

10.6 this immediately translates into a distributional result for the

derivative at upcrossings.

COROLLARY 10.7 The Palm distribution of the mean square derivative

19'0) of a mark at a u-upcrossing does not depend on u, and it has

the Rayleigh density (10.13).

PROOF Equality of finite dimensional distributions of course implies

equality of the distributions of the difference ratios (nk(h) -rk(O))/h

and ( u(h)- Cu (0))/h and hence of their mean square limits. o

The value of determines the slope of u(t) at 0. For large t-

values the dominant term in u(t) will be K(t), if r(t) and r'(t)

0 as t , -. (A sufficient condition for this is that the process

{f(t)} has a spectral density, in which case it is also ergodic.) Then

r(T+ s, T +t) - r(s- t) as T * - so that u(t) for large t has

asymptotically the same covariance structure as the unconditioned pro-

cess (t), simply reflecting the fact that the influence of the up-

crossing vanishes.



Excursions above a high level

We now turn to the asymptotic form of the marks at high level crossings.

The len-vtn and heigjht of an exaursion over the high level u will turn
-i

out to be of the order u 1 so we normalize the model process u(t)

by expanding the scale by a factor u. Before proceeding to details we

give a heuristic argument motivating the precise results to be obtained,

by introducing the expansion

2t
2

r() = 1 ( +oi)

2u 2

(10.15)

r' ( 2 t - -- (I +o i)
u u

as t/u - 0, which follow from (10.1), and by noting that Kdt/u) = o(t/u)

as t/u - 0. Inserting this into ru (t) and omitting all o-terms we

obtain

(10.16) <u(t/u) - u(l -t 2/2u2) + ,t/u = u + t -t 2/2

as u - and t is fixed.

The polynomial ct - A2 t
2/2 in (10.16) has its maximum for t = /A 2

with a maximum value of 2/212 and tnerefore we might exp.ect taat

(t) has a maximum of the order u + I C2/2A Hence the probability

that the maximum exceeds u + v/u should be approximately

z -z2/2X2 -v
2 e dz = e

2 2 -xv 2

The following theorem justifies the approximations made above.

THEOREM 10.8 Suppose r satisfies (10.2) and r(t) - 0 as t .

Then for each T > 0,

PI sup (t) ?u +H1 - e-v  as u ,
O~<tu u

i.e. the normalized height of the excursion of u(t) over u is

asymptotically exponential.

, i i i



PROOF We first prove that the mnaxinum of r u(t) occurs near zero.

Choose a function 5(u) as u - such that 5(u)/u - 0 and

S2(u)/u - -. Then

(10.17) P"' sup (t) >u: - 0,
(u)/u<tT u

since the probability is at most

Pf sup ( Ct) -ur(t) + sup ur(t) >ur
(u)/u<tuT (U)/ut<_

< P{ sup (- r'(t)/A2 +K(t)) >u(l - sup r(t))}.
O<t<T (U) /u<tT

Here

sup (-cr'(t)/X2 +K(t))

O<t<T

is a proper (i.e. finite valued) random variable, and (since I - r(t)

= 12t2/2 + o(t 2 ) as t - 0, and the joint distribution of &(0) and

E(t) is nonsingular for all t so that r(t) < 1 for t * 0)

1 - r(t) > Kt 2  for 0 < t < T, some K depending on T, so that

u(l - sup r(t)) > Ku 6 (

6(u)/u<t<T u2

which implies (10.17).

In view of (10.17) we now need only show that

p{ sup (t) >u+-} = P{ sup U(. (t/u) -u) ,v: e -

0<t 6(u)/u u U 0<t<_ (u)

for v > 0. By (10.15)

(10.18) U( u(t/u) -u) = -u 2 (1-r(t/u)) - ,ur'(t/u)/A 2 + u.(t/u=

=_- 2t
2/2 • lol)+;~l~~) (tfu)
-x (I2 /2((1) + rt (1 + o(1)) t ' t Tu)

uniformly for 0 < t < 6(u) as u * . Since 'r (t): has a.s. crontin-

uously differentiable sample paths with r' (0) 0, and (u)/u , G,

sup (t u) 0 (a.s.) as u .
O<t<6 (u) t U



This implies that the maxinmum of u(, (t/u) -u) is asymptotically de-

termined by the maximum of - 2 t 2/2 + ,t and that

v. =222
limp sup- P~sup(- t /2 +t) > v} = P{r2/2, 2 > V"

-v
-e

as was to be shown.

As mentioned above, distributional results and limits for the model

process I u (t). carry over to similar results and limits for marks

nk(t) = 4(tk + t), i.e. for the ergodic behaviour of the original process

( (t)} after tk'

In particular Theorem 10.8 has the corollary that the limiting em-

pirical distribution of the normalized maxima after upcrossings of a

level u is approximately exponential for large values of u, i.e.

#{t E (0,T); sup '(t +t) >u+Y/
k0tT u - v

T__ #it k E (0,T) J

as u - =, a.s.

This clarifies the observation in the beginning of this section,

that an excursion over the high level u also exceeds the level

u - log p with probability elog p =
u

It should be noted here, even if not formally proved, that the ex-

cursions emerging from different upcrossings are asymptotically inde-

pendent. This explains the asymptotic independence of extinctions of

crossings with increasing levels.

The following theorem follows from (10.18).

THEOREM 10.9 Suppose r satisfies (10.2) and r(t) - 0 as t -.

Then with probability one the normalized model process

Cu(t) = U( u(t/u) -U)

tends uniformly for t < T to a parabola

Ct)= - 2t
2 /2 + u



in the sense that, with probability one,

sup Izu(t) -Z (t),

as u - w.

This theorem throws some light upon the discrete approximation used

in the proof of the maximum and Poisson theorems in previous chapters.

The choice of spacing in the discrete grid, q, appeared there to be

chosen for purely technical reasons. Theorem 10.9 shows why it works.

By the theorem the natural time scale for excursions over the high

level u is u- , so the spacing q = o(u- ) of the q-grid catches

high maxima with an increasing number of grid points.



CHAPTER 11

MAXIMA AND MINIMA AND EXTRv:iA. THECRW FOR DEPENDENT PROCESSES

The main thread in the previous chapters has been the extension of ex-

tremal results for sequences of independent random variables, to depen-

dent variables and to continuous time processes. Trivially, extremes in

mutually independent processes are also independent, and we shall see

that this holds asymptotically for normal processes even when they are

highly correlated.

However, we shall first consider the joint distribution of maxima and

minima in one process. (Since minima for 7(t) are maxima for -,(t),

this can in fact be regarded as a special case of dependence, namely be-

tween {j(t)} and {- (t);.)

Maximum and minimum

Suppose ;"' $2 ... is a stationary sequence of independent random va-

riables with

P{ I 'un ' P{f < -_v n I ~

as n * , so that

P{ max i<u n } *e -
, P{ min i>-v n  e-

l<i<n <li<n

Then clearly

P-v n < mini max i u n }  P{-vn <i I u n I n

<in li<n n-1-n

= (1 - P{&I >U n} - p{I 
< -V n)n

(1 - + + o(n-n)) _ e-e-' 0

n

i.e. maximum and minimum are asymptotically independent.

For a standardized stationary normal process {(t)} and f- (t)}

have the same distribution. Writing



m(T) = infl:.s) 0 <s ,T

clearly m(T) = - sup - (s) ; 0 < s - T', and nence m(T) has the sa.e

asymptotic behaviour as -M(T). If -(t) satisfies the hypotheses of

Theorem 7.6,

P:m(T) -v,, - e

as T, v- and T. - > 0 for

1 1/2 -v
2
/2

2_ X 2  e

It follows, under the hypotheses of Theorem 7.8, that

PaT (m(T) -bT) <x: - i - exp(-e x )

with the same normalizations as for maxima, i.e.

aT = (2 logT)

log (X 1/
2

/21T)

bT = (2 logT) 1 / 2 
+ 2 og(2 log T)12

It was shown by Berman (1971 a) that under no further assumptions

m(T) and M(T) are asymptotically independent as in the case of inde-

pendent sequences studied above. We shall now prove this result.

With the same notation and technique as in Chapter 7, we let N u  and

N(q) be the number of u-upcrossings by the process {(t) ; 0 <t <h:

and the sequence f{(jq); 0<jq<h}, and define similarly D_v and

D-qV to be the number of 1oancrossinjs of the level -v. We first ob--V

serve that if, for h = 1,

1 / 2/2= E(N u) = A 2 e /

v= E(D_) 11/2 -V
2 /2

v 2 A2 e

and u, v - so that T - T > 0 and Tv a a > 0, then we have

u - v and

(11.1) u - v -3/-,
u



a X a S "
S.z veiO ~q f9-- n a q t e i c- e , q i-t i.h./ 2n , t .

.n ter -:'a i

.jq E

-k k

PROOF 'I By Lemma 3 (1s a pp olic to and. and

P u E <a I n- -P"a:, -- : ,a <q;

rewcated here .

The following; two .eramas give toe asy-mptotic independence of bath max-

ima and minima over the separi-< Ik-intervals.
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t. a t - x

L a-e positie ac 're net aes

LEMMA 1.4 If I7.1 ) holds, there is an h - C such t-at as .2, ' .

-M h)'-2, m, -v' .

for a iz n-.

PR2F 0 Lemma P.F 2 a nd stat orar y it is enou'x- to orove at

:%- ]qlm0 i nql

"orir--atcsfy r. .q, y' in 3- . stati orarity, this prohbaoiit y

is or rndcdb

hv
12 .4, 'n? :, ] - , ;r, 9n :, r - . '[ ) d : q '-

C>.'_9h

Here., for j] t 9,



?< (0) >u, [Jq) <-v: x P, C, -q, G x dx

(11.3) = (x (-v xr{%q; dx,
- r2 (jq}

since, conditional on 7(0) = x, Jq) is normal with mean xr .)

and variance 1 - r 2(jq) . Now, choose h, - 0 such that 3 , r(t) - I

for 0 < t h 0 , whicl; is possible by (7.1). If 0 < -q , h 0

then

(-v -xr (jq) /4 -r2()q) <-v,

for u, v > 0, so that (11.5) is bounded by

o • (u) iv)
) (x) t(-v) dx = (I - (u) ) (I - (v)) ( ) v

u

Together with (11.4) and (11.5) this shows that

0 < P{ max (jq) u, min ;(jq) <-v, < - ). u (v)
O<jq~h 0<jq<h q uv

= h 2  $(u) 1I(v) . 1

T ( +'v) quqv (; + ) =  (1) (" +

since , (u) (v) /(u + j) = O(>/( +',)) -0, and q can be chosen to

make quqv - 0 arbitrarily slowly.

THEOREM 11.3 Let u = uT and v = vT - = as T * , in such a

way that

T 1l/2 e-U 2 /2 0

T 1/ 2  -v 2/2Tv 2 e G a 0.

Suppose r(t) satisfies (7.1) and either (7.2) or the weaker (11.3).

Then

P{-v <m(T) <M(T) <u} * e "O- T as T *

and hence

PfaT(m(T) -bT) <x, aT(M(T) -bT) <y} * (1 -exp(-ex))exp( - e -Y)

with aT (2 log T)1/2, bT (2 log T)1/2 + ,og()l/2 /2,)/(2 log Ti1 2.
T_ _ 2



PROOF By Lexma 11 ri:, and i14), and Lemna .1.' and 'i we hAe

Lim sup P-vmnmn]ra -
.  

--

] I -
- hf '

for arbitrary 0, and hence

(11.6) PV-v m(nh) - M(nh] 'u: - Pn-. n 'M(z "

as n -- . Furthermore, by Lemma 11.4,

n -V (h) - M(h) I u: (I - Pm(h) -- v; -P'-(h u; +o(. +j)

Arguing as in the proof of Theorem 7.6, the result now follows from

Lemma 7.3, using n(,j + .) T(, + ') - -, 0' h h "

This theorem of course has similar ramifications as the maxilmum theo-

rem, Theorem 7.6, but before stating them we give a simple corollary

about the absolute maximum of 7(t).

COROLLARY 11.6 If u , T / then

P{ sup 1t(t) < u; - e- 2 -

O<t<T

and furthermore

P{aT( sup ';(t) -bT <x+ log 2} - exp(-e-). o

O<t<T

As for the maximum alone, it is now easy to prove asymptotic indepen-

dence of maxima and minima over several disjoint intervals with lengths

proportional to T. As a consequence one has a Poisson convergence theo-

rem for the two point processes of upcrossings of u and downcrossings

oi -v, the limiting Poisson processes being independent. Furthermore,

the point process of downcrossings of several low levels converges to a

point process with Poisson components obtained by successive binomial

thinning, as in Theorem 8.6, and these downcrossings processes are as-

ymptotically independent of the upcrossings processes. Of course, the

.I



entire point process of local minima, cornsidered in Theorem 9.4, is

also asymptotically independent fhe point process of normalizea lo-

cal minima.

Extreme values and crossings for dependent processes

One remarkable feature of dependent <-si" processes is that, regardless

of how high the correlation-short of perfect correlation-the number of

high level crossings in the different processes are asymptotically inde-

pendent, as shown in Lindgren (1974g. This shall now be proved, again by

means of the important Lemma 3.2.

Let ft) ... , (t); be jointly normal processes with zero

means, variances one and covariance functions r -) = Cov(ik(t),

k(t +T)). We shall assume that they are jointly stationary, i.e.

Cov(ik(t), ; 9 (t +T)) does not depend on 7, and we write

r kZ( ) CoV("-k (t) 2,  (t +7))

for the or . -'r2,'i2-oa function. Suppose further that each r k satis-

fies (7.1), possibly with different k' s' i.e.

(11.7) rk(t) = - "2k t 2 /2 + o(t ) t - 0,

and that

rk(t) log t ' 0,

rkZ(t) log t 0, as t ,

for 1 k, , p. To exclude the possibility that ik(t) H -. 9, (t + 0

for some k X 2, and some choice of t0 and + or -, we assume that

(11.9) max sup ir k(t) - .
k*2 t

However, we note here that if inf t rk£(t) = -1 for some k . £,

there is a t0  such that rk2 (t0) = -i, which means that rk(t)

0 A maximum in (t) is therefore a minimum in kt),



and as was shown in the first section of tihis chapter, maxima and mini-

.na are asymptotically independent. In fact, with some increase in the

complexity of proof, condition (11.9) can be relaxed to

max k Z supt rkl (t) i.

Define

Mk (T) sup (t);0 < t < Ti, k = 1. p

and let uk = uk (T) be levels such that

T u/2
T -T e k T >0
k 27' 2k k >

as T . Write = min , ..., IJ ;.

To prove asymptotic independence of the Mk(T) we approximate by the

maxima over separated intervals I., j = 1, ...I n, with n = [T/h] for

h fixed, and then replace the continuous maxima by the maxima of the

sampled processes to obtain asymptotical independence of maxima over

i~ ract intervals. We will only briefly point out the changes which

have to be made in previous arguments. The main new argument to be used

here concerns the maxima of k(t), k =, ..., p over ,.e fixed inter-

val, I, say.

We first state the asymptotic independence of maxima over disjoint

intervals.

LEMA 11.7 If rk, rkl satisfy (11.7)-(11.9) for 1 1 k, Z - p,

and if T. k ' Tk > 0, then for h > 0 and n = [T/h],

PfMk(nh) -uk, k = 1, ....p - P n{Mk(h) <uk, k=l1 .... pi 0.

PROOF This corresponds to (11.6) in the proof of Theorem 11.5, and is

proved by similar means. It is only the relation

n
(11.10) P1k (jq) Uk, jq E U Ir, k=l1 ...= p} -

r=l

n
- 1 P{k(jq) uk, )q It, k=1 ..... pi -E 0,
r-l

_ __



corresponding to Lemma .7 1. , tiat has to he gven a different cr oo.

Identifying :,.I in Lemma 3.2 with .q) t 7 j
n

jq E U I, an .... analogcusly, but with variables from diffe-
r=l r'n

rent I -intervals indeoendento, .9 ives, since sup rk (t

n
P (jq) ak ,  UI k It .... p; -

r =1

n

k cj) , Uk, j£r, .

p -u /PI + r 'k,
(11.11)_" K Z rk((i j)q) e +

k=l iij

2u (I r kZ((i-j)q )

+ K rk2((i- j)q) e
l<k*Z<p i<j

where Z as before indicates that the sum is taken over i, j such

that iq and jq belong to different I r . Since both rk(t) logt * 0,

rkk (t) log t - 0 and sup ir k Z (t  - I we can, as in Lemma 7.1 (ii),

conclude that both sums in (11.11) tend to zero.

LEMMA 11.8 If rk, rkZ satisfy (11.7) and (11.9), for i k, Z < p,

then

(i) P{Mk(h) >uk, M2Z(h) >uZ} = 0G k +4Z) for k * Z,

and

p p
(ii) P{Mk(h) euk , k= ... , p} = 1 - Z PfMk(h) >uk} + o( k

k=l k=l

PROOF (i) As in the proof of Lemma 11.4 it is enough to prove that, if

q * 0 so that ukq - u2 q - 0 sufficiently slowly,

PI max Ek(jq) >Uk' max Z£(jq) uZ o O(Uk +P C

Ojq<h O<jq<h

Since, for r = k, Z,

P max r(jq) >u r = r
0<jq<h

it clearly suffices to prove that

iL _i-



(11.12) P, max (jai ' k x "lax
0q- h jjq

P. max . Q - 2 max qj s-.,

To estimate the difference we a,4ain e Lemma 3.2 wth defined -- y
0

rk, r,., and rk;, ard 0 obtained ty taking rk . icienticaljy zero.

Elementary caiculation snow that the 1Lfferenc, .. 2 equals

P max k(jq) Uk, max 3(Jq) u:,

- P( max <kj) 'U;P: max "-- -q 1:
k Ojq-h jqh

which by Lemma 3.2 is bounded in modulus by

(ii.13) - ,r ( (i - j)q) (I -r2 (i 1/2

O<iq, jq'h

-u /(I+ rkZ (i- )q)

with u = min(uk, u).

Now, by (11.9), suplrk£ (t)i = - for some I - 0, and using this,

we can nound (11.13) by

Kh2q - 2 exp(-u 2/(1 +1-I))

h2  (u) -2 2 2
Kh (uq u exp(-u22(2-) k

0 (; k + 2,)

if uq - 0 sufficiently slowly, since 6(u)/(-k +- is bounded.

(ii) This follows immediately from part (i) and the inequality

p
z P{Mk(h) u - 2 P{Mk(h) ' uk, M,(h) ,u(

k=1 l.kp

p p
P( U {Mk(h) uk}) 2 P{Mk(h) >U}.

k=l k=l

Reasoning as in the proof of Theorem 7.6, and usinq Lemma 11.7 and

Lemma 11.8 (ii) we get the following result.

- ---- I I § § i



THEOREM 11.9 Let Uk U k' T) as T - S tnat T. k

M k k

TL exp(-u 2/2, , k n,4 ~ r.A

r k2 (t) ,;atisFy KI.7;- I7l. Then-

p
?'M, (T) u , , kl. p: - exp- k

k=l

as T

Under the same conditions as in Theorem li.9, the time-normalizec

point rrocesses of u k-upcrossings tend jointly in distribution to

independent Poisson processes with intensities -k" The precise formula-

tion of the theorem, and its proof, is left to the reader.

We end this chapter with an example which gives an illustration to

the extraordinary character of extremes in normal processes.

Let K(t) and '-it) be independent standardized normal proces-

ses whose covariance functions r and r. satisfy (7.1) and (7.2),

let ck, k=l, ...,p, satisfying ck  1 1, and ck * c9, k ,be

constants, and define

2, 112_ck t = k (t) + ( -Ck ().

Then the processes ,k(t) , k =1, ..., p are jointly normal and their co-

variance functions rk (t) and crosscovariance functions
rkZ(t) = Ckc r (t) + ( -c 2 ) 1 / 2 ( -c2) 1/2

satisfy (11.7)-(11.9). Thus, even though <1 (t), ..., p(t) are linear-

ly dependent, their maxima are asymptotically independent.

We can illustrate this geometrically by representing ('(t) , r(t))

by a point moving randomly in the plane. The upcrossings of a level uk

by 'k(t) then correspond to outcrossings of the line

ckx + (I -c 2 ) 1/2y = U

by (r(t), n(t)), as illustrated in the following diagram.
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CHAPTEP 2

MAXI. A AND ZRGSSINGS 2F NON-DIFE_?.NTIA3LE N AL RCCESSES

The basic assumption c:- te revcus cnazters ras zeen c-ra- the :var:-

ance function r(-; of the stationary ncrmal process - t as an ex-

pansion

r = 1 - 2/2 + o( as - 0.

In this chapter we shall consider the more generai class of covariance

functions which have the expansion

(12.1) r(:) = 1 - C >) + o(Vr ) as r - 0,

where i is a constant, 0 - a - 2, and C is a positive constant.

This includes covariances of the form exp(- - 1), the case a = I

being that of the Ornstein-Uhlenbeck process. Note that we may take

= 2 in (12.1) so that all results of this chapter are indeed true

also for the regular case previously studied; cf. Theorem 12.9.

If a < 2 we cannot expect a Poisson result to hold for the upcross-

ings of a high level, since r is then not twice differentiable, imply-

ing that >2 = ' and hence the mean number of crossings of any level

in any interval is infinite by Rice's formula. Furthermore, it can be

shown that at every point t where a crossing occurs, there are an un-

countable number of crossings in every neigbourhood of t. However, it

is certainly possible for the maximum M(T) to have a limiting distri-

bution. The point is that while upcrossings may be infinite in number,

(12.1) is, as noted in Chapter 6, p. 8, sufficient to guarantee con-

tinuity of the sample paths of the process, and thus ensure that M(T)

is well defined and finite.

We shall in fact show that aT(M(T) -bT) has a limiting double ex-

ponential distribution if the normalizing constants are

U



- '2 >q ,2

12.2 T  (2 log T i L/2 1 -2 - T 1*T

T (2 lo T 2

l og (C / H  2-) -L/2 2e2-1, / 2 --

where H is a certain strictly positive constant.

This remarkable result was first obtained by Pickands (19E9, ,a-

though his proofs were not quite complete. Complements and extensions

have been given by Berran (1971bj, Qualls and Watanabe (1972) , and

Lindgren, de Mar$, and Rootz~n (1975). The method of Pickands has some

particularly interesting features, in that it uses a generalized notion

of upcrossings which makes it possible to obtain a Poisson type result

also for -L e 2.

Specifically, Pickands considers what he terms £-rwt.. Given

- 0, the function f(t) is said to have an c-upcrossing of the level

u at to if f(t) < u for all t E (t0 -c,t0 ), and, for all - 0,

f(t) > u for some t E (t0 ,t0 +r,). Clearly, this is equivalent to re-

quiring that is has a (non-strict or strict) upcrossing there, and

furthermore f(t) I u for all t in (t0 - t,to) . An E-upcrossing is

always an upcrossing, while obviously an upcrossing need not be an

upcrossing.

Clearly, the number of t-upcrossings in, say, a unit interval, is

bounded (by 1/) and hence certainly has a finite mean. Even if this

mean cannot be calculated as easily as the mean number of ordinary up-

crossings, its limiting form for large u has a simple relation to the

extremal results for M(T). In particular, as we shall see, it does not

depend on the E chosen.

The main complication in the derivation of this result, as compared

to the case a = 2, concerns the tail distribution of M(h) for h

fixed, which cannot be approximated with the tail distribution of the

simple cosine process if a < 2.
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Now, let a > 0 and introduce the event

W (k~p)1/2
A = U { max (k212 > (2B(p+)) .p=0 0<k<2P-l E( (kp)) /  -> ( ( +1 ) 2}

If B > log 2, Boole's inequality, together with (12.5), implies

00 2P-1i(~ p /
P(A) < E E P{ 2 2(k) > (2a(p+l))1/21p=0 k=0 E( (k,p)2) /

< Z 2 Pe " (p+l) = e-/(1 e- 8 - log2))

p=0

so that if B > 2 log 2, then

(12.6) P(A) < 4e-B.

But for B < 2 log 2 this holds trivially (since P(A) < 1) and we can

therefore use (12.6) for all values of 8 > 0.

Next, note that on the complementary event A*, all the inequalities

jc(k,p)j _ E( (k,p)
2 )1 / 2  . (2a(p +1)) 1/2

hold for p = 0,1, ... ; k = 0,,..., 2p -, and that (12.3) implies

that

E(C(k,p) 2< C 2-(~~

Thus, by (12.4) we conclude that on A*,

M(t) - (0)j < E CI/2 2-(P+l) /2 (28(p+l))1 /2 - say,
p=0 a

and that consequently, by (12.6),

P{ sup jC(t)-&(o)I < 4c <4e-8

0<t<l a

The conclusion of the lemma now follows by choosing = cx 2/C, since

P{ sup E(t) >x) < P{ sup 1 (t) - (0)J >x/21 + P{(0) >x/2}
0<t<l 0<t<l

-c x 2 /C 1 x2/8a
2

< 4e + e- a



With this result out of the way we return to the process { (t)}

with covariance function r(t). When considering the distribution of

continuous or discrete maxima like sup E(t) and max (jq) for
0<t<h 0<jq<h

small values of h, it is natural to condition on the value of (0).

In fact, the local behaviour (12.1) of r(t) is reflected in the local

variation of (t) around E(0). For normal processes this involves no

difficulty of definition if one considers E(t) only at a finite number

of points, say t = ti, j =1, ...,n, since conditional probabilities

are then defined in terms of ratios of density functions (cf. Chapter 6

p. 16). Thus we can write, with t0 = 0,

u
P{ max (tj) <u} = f O(x)P{ max E t.) <ul&(0) =x} dx,

j=0 ..... n 3- j=l,...,n -

where the conditional probability can be expressed by means of a (condi-

tional) normal density function (cf. Chapter 10 p. 66). In particular the

conditional probability is determined by conditional means and covari-

ances.

-nFor maxima over a real interval we have, e.g. with t. = hj2

nj = 0, ... , 2n

Pj sup (t) <u) = lim P{max (t.) <u},
0<t<h n-w tj

which by dominated convergence equals

u
f (x) lim P(max &(tj) <u[(0) =x} dx

- n _ t.3

Now, if the conditional means and covariances of &(t) given (0)

are such that the normal process they define is continuous, we define

P{ sup (t) <uI (0) =x}

G<tcu

to be the probability that, in a continuous normal process with mean

E(&(t)jE(0) =x) and covariance function Cov(E(s),&(t)I (O) =x), the

maximum does not exceed u. Then clearly



lir P{max &(t.) <uj&(O) =x) = Pi sup (t) <u; (O) =x}.
n-w t. O<t<h

In this case we have, by dominated convergence,

u
P( sup "(t) 1u} = r (x)P{ sup (t) <u! (O) =x! dx.

O t<h -O 0't~h

In the applications below, the conditional distributions define a con-

tinuous process, and we shall without further comment use relations

like this.

To obtain non-trivial limits as u - we introduce the rescaled

process

u(t) = u(j(tq) -u),

where we shall let q tend to zero as u - =. Here we have to be a

little more specific about this convergence than in Chapter 7, and shall

assume that u 2/q - a > 0, and let a tend to zero at a later stage.

LEMMA 12.2 Suppose u -=, q - 0 so that u2 /aq - a > 0. Then

(i) the conditional distributions of &u(t) given that u () = x,

are normal with

E(u (t)W' u(0) =x) = x - Caalt1a(l +o(l)),

Cov(U(s), 'u (t) ju(0) =x) = Caa(Is a10' + tI - t - s1 )  + o(1)

where for fixed x the o(l) are uniform for max(;sl,lt!) < to , for

all t0 > 0,

(ii) for all t0 - 0 there is a constant K, not depending on a or

x, such that, for jsj,!tj - to,

Var(u (s) -u (t)IFu (0) =x) < KarIt -s c .

2
PROOF (i) Since the process { u(t) is normal with mean -u and

covariance function

Cov(u (S), u(t)) = u 2r((t -s)q)



we obtain (see e.g. Rao (1973), p. 522) that the conditional distribu-

tions are normal with

E( F) I(0=) = -u 2 + u 2r(tq) -1(x +u 2 )
u u 2

2
= -u 2+ (I -Cqalti' +o(q'ltl')) (x +u2)

= x - (x +u 2 ) (Cq'ltl' +o(q'ltl'))

= x - Caa It1 ( +o(1)),

since u 2q * a > 0 and x is fixed. Furthermore,

CoV(C U(s), u tl u (0) =x) = u 2(r((t -s)q) -r(sq) r(tq))

= u2 (1 - CqO'It - s I - (I - Cq I s (I -CqctI t I ) + o(qt))

= Ca' (IsI' + It It-s I) + o(i),

uniformly for max(Isi,ItI) < t0

(ii) Since &U(s) - u(t) and u(0) are normal with variances

2u2 (1 -r((t -s)q)) and u 2 , respectively, and covariance u 2(r(tq)

- r(sq)), we have, for some constant K,

Var( u (s) - cuwt) lu (0) = X)

= 2u2(l-r((t-s)q)) - u 2(r(tq) -r(sq))
2

" 2Cu 2q It-sc +o(u 2 qLt -sIa)

" Ka' It-s ,

for Is Ij, Iti _ t 0

The first step in the derivation of the tail distribution of M(h) =

supf (t); O<t<h} is to consider the maximum taken over a fixed number

of points, 0, q, ... , (n- l)q.

LEMMA 12.3 For each C there is a constant h (n,a) < such that,

if u q - 0, u 2/a q * a > 0, then

1 /1(u)7u P{ max (jq) >u} i Cl/a H(n,a).
.j <n
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PROOF We have

P{ max &(jq) >u} = P{ max C (j) >01
O<j<n <j<n

= P{( (0) >0} + P{ u(0) <0, max u(j) >0),0<j<n

where P{ u(0) >01 w P{E(0) >u) = I - 0(u) - 0(u)/u. Since furthermore
2 2

&U(0) is normal with mean -u and variance u , we have

P{&u(0) <0, max (j) >0}0<j<n

0 1 x
(12.7) = U 0(u+-) P{ max & (j) >01&u(0) =x}dx

-u 0<j<n

0 xx2 /2
0 *(u) f e-X /2u P{ max (t (j) -x) >-Xltu(0) =x}dx.

u -M 0<j<n

By Lemma 12.2 i), for any fixed x,

E(E (j) -XI(O) =x) - -Cae'jJI,

Cov(&u i) -x, &Uj) -Xj u(0) =x) - Ca0(Iii0 + ljc - li-jl)

as q - 0. Since limits of covariances are covariances, one can define

a sequence of normal r.v.'s, a (j), ij =1, 2, ... with mean and covari-

ances depending on a = lim qu

E(Y a(j)) = -Ca ljl,

Cov(Ya(i), ya(j)) = Cae(Iil +Ijle _ ji-jl").

Now convergence of moments implies convergence in distribution for

jointly normal r.v.'s (as can easily be seen, e.g. using characteristic

functions). The boundary of the set { max Ya (j) >-x} is contained in
0<j<n

the set

n-1
U {Y a(j) =-x}

j=l

and since the one-dimensional distributions of Ya (1), .... ,a (n -1)

are all non-degenerate, { max Ya(j) >-x} is a.s. a continuity set,
C<j<n
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and it follows that

P{ max (& (j) -x) >-xI (0) =x} - P{ max Y (j) >-xI.

O<j<n u U0<j<n a

To be able to use the dominated convergence theorem in (12.7) we note

that, by Lemma 12.2 (i),

Pf max (&u(j) -x) >-xl&u(0) =x}
0<j<n

nEP{ u (j) -x >-Xj u(0) =x)
j=l

(c' -c"x)

for come constants c', c" > 0. This shows that the convergence in

(12.7) is dominated, and we obtain

01 P( max &(jq) >u} - 1 + I e-XP{ max Ya(j) >-x}dx <
u)/u j<n - 0<j<n

which proves the existence and finiteness of the constant H( (n,a).

For future use we note the following expression for the constant

Ha (n,a):

(12.8) H (n,a =C I + f e-P( max Y a(j) >-x}dx.
-" 0<j<n

LEMMA 12.4 Suppose u - =, q 1 0, u2/aq -t a > 0, and take h such

that sup r(t) < I for all E > 0. Then, for each C,
<t<h

(i) there is a constant H (a) < w such that

H (n,a)a - H (a) as n -,
na a

and

2 P{ max (jq) >u} * h Cl/ a H (a),
U 2 (U)/u 0<jqh

(ii) H (a0 ) > 0 for some a0 > 0.



PROOF (i) Let n be a fixed integer, write m = [h/nq], and

B = max (jq) >u}.rn<j<(r+l)n

Then

m-i 
mP( U B ) < P( max U(jq) >u! < P( U Br) ,r=O O'jqh r=O

where, by Lemma 12.3,

m
P( U Br) < (m+I)P(B0 ) - (r+1) O--) C1/ 0 H (n,a)r= 0

hu2/aiU CI/ U

na u)

since I/q - u2/a /a by assumption. Hence

(12.9) lim sup u 2 /- 1  Pt max (jq) >u} < h C1/ a H (n ' a )

u-W -777-3,O(u)/u 0<jq<h na

Furthermore

rn-i rn-i
P( U B r > Z P(Br ) - E P(Br n Bs)r=0 r= r r+s

m-i
_ nP(B 0 ) - m Z P(B0 n Br)

r=l

so that

(12.10) lm inf P(r ni( U B r ) > h C nau - u2/ 0(u)/u r=0 - na
m-1

- lim sup a. M Z_ P(B n B
u. u 0(u)/u r=l 0 B

h / H(na) sna ,sy

We shall now show that

(12.11) pn = lm sup 1 m-i
n u2/a E P( 0 A B) 0 as nua a (U)/U r=l

By Boole's inequality and stationarity
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m-1
m E P(Bo n 3r) =

r=l

M-i
= E P( U U {(iq) >u, (jq) >ul)

r=l 0<i<n rn<j<(r+l)n
(12.12)

n-I mn
_m E I P{ (iq) >u, (jq) >u)

i=0 j=n

n<m E j PI{C(0) > u, (jq) > u}
j=l

mn
+ mn E P{ (0) >u, (jq) >u}.

j=n+l

To estimate these sums we have to use different techniques for small and

large values of jq. Let E > 0 be such that

I > 1- r(t) > C ItIn for |tl .

Assume jq < c, and write r = r(jq). Since the conditional distribu-

tion of (jq) given C(0) = x, is normal with mean rx and variance

2
l- r

P{ (0) >u, (jq) >u} = f (x)P{(jq) >ul (0) =x}dx
u

u-xr- ¢ (x)(i-€( ))dx

u u u-r- -
= x(l- I__ r u-xr

(u ur u-x+ f(l-,(u)) )dx

2 (l-P (u)(-(u/H) < 2 u (
Ir - U 1+r

Here,

l-r l-r(j) >C
l+r l+r(jq) - > K4 au 2 ,

for some constant K > 0, and thus if nq E,
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n
m Z j P{((O) >u, C(jq) >u}

j=1

< 2m E j u(i - OKj a
j=l

(12.15)
h 0 (u) n jn I_

q U nfj=l

u2/o ,
< O(U) . K'h 1 77 jC-,ja)

<U aU nh Z j (1 - I~vKj a
- U a nj=l

for some constant K'. Since 1 - t(x) < t(x)/x the sum

E j (l -(j 07))
j=l

is convergent, and since nq 4 0 as u * (n fixed)

1 n
(12.16) lim sup u2/a- m Z jP{(0) >u, (jq) >u} 0 (1/n)u 0 u (u)/u j=l

as n -.

For the second sum in (12.12) we get, again using (12.13),

[c/q]
Imn E P{F(0) >u, &(jq) >u}

j-n+l

<VKh u2/a 0(u) (i- /Ka ) ).
(12.17)< Y E (l-4(1 a)qu2/ u j=n+l

where the sun is convergent. For terms with jq a£ we use the esti-

mate from Lemma 3.2,

Pf (0) >u, &(jq) >u} < (1 -~ (u))
2  + Ke-u 2/(l+ lr(jq ' I)

which implies that

mn
fan E P{E(0) >u, &(jq) >u}

j=[c/q]+l

< (t) 2( (u))2 + Kh z e u /(1+r(jq)1)
q q £<jq<h

Since 6 = sup Ir(t) I < 1, this is bounded by
e<t<h
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h 2  2 ,Kh 2 -_u2/(1+6)
q2(1- (u)) + eU e (+

q2 q2

u 1-6
= u (u) (K u e 2 1+6 +

u u2/aq2uu

(12.18) =u 2/t (u) *o(1) as u -,
u

since u/(u 2/aq) - u +2/a 2 and 6 < 1.

Together, (12.17) and (12.18) imply that

1 mn
lir sup 2/ mn Z P{&(0) >u, (jq) >u}

u-W u O(u)/u j=n+l

K' E (l-¢(vKjaa)) 0, n -,

j=n+l

and combining this with (12.16) and (12.12) we obtain (12.11).

Thus we have shown that

h Ha (n'a)1

h C .HLna Pn < lim inf 1 P{ max (jq) >u}na - uin u 2 /a (u)/u 0<jq<h

< lim sup 1 P{ max &(jq) > u}- u-P- u2/ (u)/u < jq<h

< h H (n,a)
na

where pn * 0 as n * =. Since H a(n,a) < - for all n, and the

lim inf and lim sup do not depend on n, this implies the existence

of

H (n,a)
lim =a H (a),na

which is then the joint value of lim inf and lim sup. Furthermore

this proves that H (a) < -.

(ii) Take c > 0 small enough to make

1 1> 1-r(t) > 2Kltla, some K > 0,

for It < c. Applying (12.15), we obtain for Ihi < c,
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P{ max (jq) >u}
0<jq<h

[- P{ (0) >u} - [-] z Pi (0) >u, (jq) >u}q q 0<jq<h

> [h (i- (u))- 2[ h ) z (u) (I - (P(u r(jg))
q q 0<jq<h U 1+r(jq)

011 (u)[h/q]+l

> h] ( +o(1) - 2 h (1- /KjIan)).
j=l

h h u2/a
Since -] - u' , part (ii) follows fromq a

zhq]l (I -D (Flja)) < E (1 - D (Kjcac))

j=l j=l

E a 0 as a -,

.Kj a

as there is then certainly one a0  that makes the sum less than

1/2.

The following three lemmas relate the continuous maximum sup (t)
0<t<h

to the discrete one max &(jq). We first prove that we can neglect
0<jq<h

the probability that the discrete maximum is less than u - y/u and

the continuous is greater than u, as y = aa 0.

LEMMA 12.5 Let u -=, q - 0, u2/a q - a > 0, and let y = a6 for some

positive constant 8 < a/2. Then

Va = lim sup 1 P{ max &(jq) <u- u, sup (t) >u}
ua*= u 2/a (u)/u 0<jq<h <t<h

- 0 as a - 0.

PROOF By Boole's inequality and stationarity

P{ max &(jq) <u-.1, sup &(t) >u}
0<jq<h u 0<t<h

< h P{(0) <Uu sup &(t) >u},
q u- 0<t<q

and with Eu(s) = u(&(sq) -u), we can write
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Pi (0) <u -, sup (t) >u}0< t<q

u-Y/u
f ! (x)P{ sup C(t) >uC(O) =xldx

x=-- ~0<t<q

-Y
= ! (U +U) Pf sup u(S) >01 u(0)=y}dy.

y=-M u 0<s<l

By Lemma 12.2 (1), the conditional distributions of Eu(s) given

&U(0) = y are normal with mean

S(s) = y - as Ir(l +o(1)) as q - 0

with the o(l) uniform in Isl < 1. Here p(s) < y for small q, and

p( sup &u(S) >01 u(0) =y} ' P{ sup ( U(S) -W(s)) >-YJu( 0 ) =y":,,,<s<l 0<s<l

where, conditional on & U u(s) - P(s) is a non-stationary normal

process with mean zero and, by Lemma 12.2 (ii), incremental variance

Var(Eu (S) - (t)&V (0) =y) Ka' t-sj' ,

for some constant K which is independent of a and y. Fernique's

Lemma (Lemma 12.1) implies that, with c = c /K,

p{ sup ( (S) -W(s)) >-yl&u(0)=y) < 4 exp(-ca-ey2
0<s<_l =y epcay)

and thus, using K and c as generic constants,

1/& P{ max &(jq) <u - , sup r(t) >u)
u 2/ u)/u 0<jq<h 0<t<h

h -Yu +Y) .exp(-cacy 2 ) dy< 2/, ; u)•
qu (u) --

K -Y -ca- ay2
2/~ fe -ca y

qu -,

K e-ca-cy 2

_ 2/ f e dy
qu _W

Ka a/2-1 (-ca8 - %/2).

Clearly, this tends to zero as a - 0, since 8 < a/2, which proves the

lemma, a
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LEMMA 12.6 If u - ", g - 0, U2/aq 4 a > 0, and - = a for some con-
stant 8 > 0, then, with h as in Lemma 12.4,

lim P f P~u -  < max (jq) <u} = h(ey -1)Cl / a H (a)u-0 u2/L (u)/u u 0<jq<h

PROOF Since u2/aq - a > 0 implies (u-Y) 2/aq * a, and since further-
U

more

-e'<'~jy

U U

as u - , it follows from Lemma 12.4 (i) that

2/ 1 P{u - -< max (jq) <u}
u /(u)/u u <jq<h

_ /1 (P{ max E(jq) >u-1) -P{ maxu 21a(u)/u 0<jq~h u - <jq<h (jq) >u)

heyc/a H (a) - hC/aH (a).

LEM-lA 12.7 Under the conditions of Lemma 12.4,

(i) h Cl/a H ( a) < lim inf - 1 P sup E (t) > u)
- W ua u2/l(u)/u 0<t<h

(12.19) < lim sup / 1 P{ sup (t) >u)

u u/ (u)/u 0<t<h

< a + h(ey-l)C/aHa (a) + hCl/aH (a) <

for Y = a where, by Lemma 12.5, va - 0 as a 0.

(ii) lim H (a) = H., say
a-0 (1 ,sa

exists finite, and

(12.20) I Pf sup &(t) >ul hcl/ Hu2 (u)/u 0<t<h

(iii) H is independent of C.

PROOF Since

P{ max &(jq) >u) < P{ sup >u)
O<jq<h " O<t<h
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< P{ max (jq) <u-i sup C(t) >u}
0<jq~h 0<t<h

+ P{u-1-< max (jq) <u)u 0<jq<h

+ P{ max E(jq) >u),
0< jq<h

part (i) follows directly from Lemmas 12.4, 12.5 and 12.6.

Further, the middle limits in (12.19) are independent of a, and it

follows that lrm sup H (a) < -. Thereforea-0

h(eY -1)C1/aH (a) .0

as a - 0, and since va * 0 it follows as in the proof of Lemma 12.4

(i) that lim H (a) exists, finite and (12.20) holds.
a-0

For part (iii), note that if C(t) satisfies (2.1) then the covari-

ance function j (T) of Z(t) = 4 (t/C
I/a) satisfies

:= 1 - Ti + o(ITI a) as T .0.

Furthermore

1/c P{ sup &(t) >u} 2 1 P{ sup Z(t) >u},
u 21(u)/u 0<t<h u O(u)/u 1</t<hc/a

which by (ii) shows that H does not depend on C. a

One immediate consequence of (12.20) and Lemma 12.4 (i) is that

lim sup 2/a 1 P{ max & (jq) < u, sup E(t) >u}
u.M u O(u)/u 0<jqch 0<t<h

(12.21) = lim supt 1 P sup E(t) >ul
u _ \u2/t O(u)/u 0<t<h

2/a1 Pf max &(jq) >u)

u2/ (u)/u 0<jqh

= hC1/a (H -H (a)) - 0 as a - 0.

Of course, (12.20) has its main interest if H > 0, but to prove

this requires some further work.
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LEMMA 12.8 H1 > 0.

PROOF We have from Lemma 12.4 (i) and (ii) that there is an a0 > 0

such that

Ha (n,a 0

H (a 0 ) = Hrn > 0.
n- na 0

Let the sequence Y a(j) be as in the proof of Lemma 12.3, i.e. normal

with mean -Caaijil and covariances Caa(ij( + j - J -il'). Then

we have from (12.7),
0

cl:l a (n,a) = 1 + I eXP{ max Y a(j) >-xldx,
-o 0<j<n

0

CI/ H (nk,a) = 1 + f eXp{ max Ya (j) >-x}dx,
-® 0<j<nk

0

C/aHa (n,ak) = 1 + I e-P{ max Yak (J) >-xldx.
- 0<j<n

Here Ya (jk), j =1, ...,n have the same distributions as Yak(J),

j=i, ..., n, which implies

H (n,ak) < H (nk,a)

for k=l, 2, ..., the r.v.'s in H (n,ak) forming a subset of those

appearing in H (nk,a). Thus

Ha (n,a 0 )  H (nk,a0 /k)
0 < H (a) lim H lim (a / k )a 0 n- na0  n- nki(a0 /k) = /

and since H (a 0/k) He  as k - , the lemma follows.

By combining Lemmas 12.7 and 12.8 we obtain the tail of the distribu-

tion of the maximum M(h) = sup{.(t); 0 <t <h} over a fixed interval.

THEOREM 12.9 If r(t) satisfies (12.1), then for each fixed h > 0

such that sup r(t) = 6 < 1 for all E > 0,
E<t<h

limr 2 /a1/ P{M(h) >u} = h CI / au4- "UU (u/ a ,

where Ha > 0 is a finite constant depending only on a.

I . ...a



REMARK 12.10 In the proof of Theorem 12.9 we obtained the ex&*:ek.? of

the constant H by rather tricky estimates, starting with

0
H (n,a) = C1/c 1 + a e max Y (j)

- 0jn a

By pursuing these estimates further one can obtain a related expression

for H ,
0

= lin f e-Xp{ sup Y0 (t) >-x}dx,
T - 0et<T

where {Y0 (t)} is a non-stationary normal process with mean -it;o

and covariances sL' + Itl" - It -sla. However, this does not seem to

be very instructive, nor of much help in computing H .

It should be noted, though, that the proper time-normalization of

the maximum distribution only depends on the covariance function through

the time-scale CI/O and on the constant H . Therefore, if one can

find the limiting form of the tail of the distribution of M(h) (for

some h) for one single process satisfying (12.1) one also knows the

value of H for that particular a. For a = 2 this is easily done,

by considering the simple cosine-process (6.6). By comparing (6.12) and

Theorem 12.9, we find H2 = l/vf.

The only other value of a for which the tail of the distribution

of M(h) has been found is a = 1. In fact, explicit expressions for

the entire distribution of M(h) are known for the normal process with

triangular covariance function r(t) = 1 - ItI, ItI ' 1, see Slepian

(1961), and as a result one has H1 = 1. In particular, this shows that

for the Ornstein-Uhlenbeck process, with r(t) = exp(-Itl), P{M(h) >u}

- huO(u). o

Before proceeding to the maxima over increasing intervals we formu-

late the following lemma for later reference.

LEMMA 12.11 Suppose { (t)} satisfies (12.1), let h > 0 be fixed

such that sup r(t) < 1 for all c > 0, and let u . ®, q - 0,
rth

b. . ... . ..
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u 2/q a - 0. Then for every interval I of length h,

0 < Pi (jq) <u, jq E I - P M(I) ,_u < LhcJa  + o(L)

where = C1 /1 H0u 2 / a (u)/u, a = 1 - Ii (a)/HL - 0 as a - 0, and the

o(i)-term is the same for all intervals of length h.

PROOF By stationarity

0 P{ (jq) <u, jqEI} - PIM(I) <u

P{ (0) >u} + P{ (jq) <u, jq E [0,h]} - P{M(h) < ul,

where P{U(O) >u} < t(u)/u = o(p). Therefore the result is immediate

from Lemma 12.4 (i),
-1.
1 Pf max (jq) >u} hHi (a)/H1 + o(l),

0<jq<h

and (12.20),

-l
W- P{M(h) >u} = h + o(l).

Maxima over increasing intervals

The covariance condition (7.2), i.e. r(t) logt - 0 as t * , is also

sufficient to establish the double exponential limit for the maximum

M(T) = sup(f(t); 0<t <T} in this general case. We then let T ,

u - so that

TV = TC1/aH u2/a (u)/u - T > 0,

i.e. TP(M(h) >ul - Th. Taking logarithms we get

log T + log(C/aH (27T) 1/2) + 2-a09logu 0- 9 T

implying

u 2 2 log T,

or log u - loq 2 + .1 log log T + o(1), which gives

2 2



(12.22) u 2 = 2 log-T + 2 -c log logT - 2 logT

+ 2 log (CI/aH (2) 1/22 (2- )/2c , + o(i).

LEMMA 12.12 Let c > 0 be given, and suppose (12.1) and 7.2) both

hold. Let T - T/Lj for T > 0 fixed and with L, = C /H'u 2/a (u)/u,

so that u - (2 logT)1 12 as T - =, and let q - 0 as u - in such

a way that u 2/q - a ' 0. Then

(12.23) q r(kq)
ke 0 as T *

q kq<T

PROOF This lemma corresponds to Lemma 7.1. First, we split the suim in
6 1-6

(12.23) at T , where is a constant such that 0 1 a < Y-6,

6 = sup{ir(t)l; Jt! I f; '1. Then, with the constant K changing from

line to line,

q E r(kq)l eu /(lr(kq)) e-u 1(1+6)

q kq<T q

2 2

<K + - i+6 K 2/o T+1-

q 2 (u /3q) (logT)

0 as T -- ,

since exp(-u 2/2) < K/T, u2 _ 2 logT, and u 2/q * a > 0.

With 6(t) = sup{fr(s) logsj; s>t), we have Ir(t)i < o-- as
log t

t * , and hence for kq > T

- u 2/(Il+r kq) l) < -u2 l(1-6(T a)/log T a
e - e

so that the remaining sum is bounded by

(12.24) Eer(kq)-U
2 (l-6(T l/log T

8 )
q Ta<kq<T

(1) 2e (1-6(TE r)/logT - I r(kq) Ilog kq.
q log T T r<kqjT

Since r(t)log t - 0, we also have

II
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q r(kq)ilog kq - 0T Ts<kq<T

as T - , while for the remaining factor in (12.24) we have to use the

more precise estimate from (12.22),

u 2 2logT + 2-2 log log T + 0(1).

Since 6(t) - 0 as t - ®, we see that for some constant K > 0,

2 2-oi

e- u (1-5(T )/log T) 1T-2 (log T)

Thus, since u2 _ 2 logT and u2/aq - a,

T < k r(kq)q - u
k

2 (
k

- 6
q

( T
T

) / l g  T a
q Ta<_Rq<T

(-) 2 T-2(log T)-( 2-a)/a 1 o(1)q log T8

- 1 (log T)2/a(log T) - ( 2 - ) / a  1 o(l) = o(1),

(u q) log Ts

and this concludes the proof of the lemma.

We can now proceed along similar lines as the proof of Theorem

7.6. First, take a fixed h > 0, write n = (T/h], and divide (0,nh]

into h intervals of length h, and then split each interval into

subintervals Ik, I* of length h-E and c, respectively. We then

show asymptotic independence of maxima, first giving the following

lemmas, corresponding to Lemmas 7.4, 7.5, respectively.

LEMMA 12.13 Suppose u - , q 0, u2/a q * a > 0, (12.1) holds, and

T- T > 0. Then

n
(M) limsup P{M( UIk) <ul - P{M(nh) <u}l < .c,u M 1 k - P

n n
(ii) lim sup IP{C(jq) <u, jqEU Ik} - P{N( UIk) <u0 < ta

u-M 1 1 a

where pa - 0 as a 0.

. in ~ un ~ l l H i l I u mn I i l I I uungl u n n i n nu m , . , i l , -- -
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PROOF Part (i) follows at once from aoole's inequality and Theorem 12.9,

since

n
0 < P{M( U Ik) U - P{M(nh) <u} < nP{i1(I*) >u n c - T.

since nm - Tb/h - i/h.

Part (ii) follows similarly from Lemma 12.11, which implies

n n
0o< P{((jq) <u, jSEU I1k - P{M( UIk) < u} <

1 1

n max(P{(jq) <u, jq } - P{M(Ik) <u})
k ak

<_, n(h -g a + no T (I oh ja  D oa

where oa 1 - H (a)/H - 0 as a - 0.

LEMMA 12.14 Let r(t) -0 as t -- , and suppose that, as u 2/-q a O0,

(12.23) holds for each E >0. Then, as T--, u2/rtq a,

n n
(i) P{ (jq) <u, jqEU Ik - I P{f(jq) <u, jq-I k  0,

1 k=l
n

(ii) limsup I I P{(jq) <u, jqEI k} - Pn (h) <_ul <T (Pa+Li)
k=l

where 0 * 0 as a - 0.a

PROOF The proof of part (i) is identical to that of Lemma 7.5 (i). As

for part (ii), we have, by Lemma 12.11,

n n
0 < R P{C(jq) <u, jqEI - P{M(I k ) <u}

k=l k=l

n max(P{E(jq) <u, iqE I k} P(M(Ik) < u)

nw(h-)P a + no(p)

s (1 - /i -R) Pa  T Pa

since np - Tij/h - r/h. Furthermore, by stationarity
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n
17 Pt ( k  -< u - pnM(h) < u}

k=1

=P fnM(I 1 ) <u} - Pn{(l(h) <u<

Sn( PiM(1 ) ,_u - P{M(h) <U)

nP M(I) > u* a n£ + a

THEOREM 12.15 Let {&(t)} be a stationary normal process with zero

mean and suppose r(t) satisfies (12.1) and (7.2), i.e.

r(t) = -Citl +o(ItIl) as t - 0

and

r(t) log t - 0 as t .

If u = UT - - so that Tw TC1 /aH U2 /a (u)/u - t > 0, then

P{M(T) < u) - e- T as T - -.

PROOF By Lemma 12.12 condition (12.23) of Lemma 12.14 is satisfied,

and by Lemmas 12.13 and 12.14 we then have

1ir sup ,PtM(nh) e u pn M(h) < u < 2T (P +h
) '

U.. a h

where -a 0 as a - 0. Letting E - 0 and a + 0 this shows thata

lim P{M(nh) < u} -Pn{M(h) < u) = 0.
n-w

By Theorem 12.9, P{M(h) < u} = 1-uh +o(j) and hence, as W - T/T,

n - T/h,

pn{M(h) < ul = (1-wh+o(())
n - e T

Since furthermore

M(nh) < M(T) < M((n + l)h),

this proves the theorem. 0

As is easily checked, the choice u T x + b T ' with aT  and bT

given by (12.2), satisfies Tp T - e - , ef. (12.22), and we immediate-

ly have the following theorem.



THEOREM 12.16 Suppose {C(t)} satisfies the conditions of Theorem

12.15, and that

aT = (2 log T)
1 / 2

bT = (2 log T) 1/ 2 + 1 2 a log lcg T +
(2 log T)I/ 2

+ log(Cl/aH -(2T- 1/2 2 (2-a)/2a

-x
Then P(aT(M(T) -bT) <x) - e- e as T - =.

Asymptotic properties of £-upcrossings

As mentioned on p. 88, the asymptotic Poisson character of upcrossings

applies also to non-differentiable normal processes, if one considers

E-upcrossings instead of ordinary upcrossings. To prove this, we need

to evaluate the expectation of N ,u (T), the number of E-upcrossings of

u by (t), 0 ' t < T.

LEMMA 12.17 Suppose r(t) satisfies (12.1). Then, with h as in Theo-

rem 12.9,

E(N ,u(h)) E(N u(l))lim (=lim - Ie

u-- hu 2/a(u)/u u u2/a O(u)/0 a

PROOF Write

A = fE(t) >u for some t E(-E,0]1,

B = {&(t) >u for some t E (0,E)}.

From Theorem 12.9 we have, for 2E < h,

P(A UB) - 2E CI/H u2/al 4 (u) as u ,

P(A) - CI/aH u 2 /a-l@(u) as u ,

P(B) - E Cl/aH u 2 /t-l(u) as u .

Hence



-1I3-

P(BA C) = P(A 0B) - P(A) F_ C1 /aH u2/a-l? (u)

and

P(BAC) _< P{Nu (C) =l} E(N u () ,

since there is at most one E-upcrossing in (0,c]. Hence

E(Nu (E)) F C /aH u2/a-1 (u)

and thus

1( ) EN ()-ClO u 2/a-1 1(u)
E( , u() E C ENEu() OtI/

as required.

In particular the lemma implies that asymptotically the mean number

of £-upcrossings of a suitably increasing level is independent of the

choice of c > 0, and this leads us directly to the Poisson result for

the time-normalized number of £-upcrossings. Let NT be the point

process on (0,-) defined by

NT(B) : N (T*B),

where the level u is chosen so that Ti. = TC1 /a H u2/a (u)/u - T > 0,

and let N be a Poisson process with intensity T.

THEOREM 12.18 Suppose that the assumptions of Theorem 12.15 are satis-

fied. Then the time-normalized point process NT of £-upcrossings of

the level u converges in distribution to N as u - =, where N is a

Poisson process with intensity T.

PROOF As in the proof of Theorem 8.2 we only have to check that for

c < d

(a) lira E (LT(c,u]) = E(N(c,d]) = t (d -c),
T-

m
and if Ri = (ci,di] (disjoint), U = U "i' then

i=l
m -TIRil

(b) P{N T(U) =0} - P{N(U) =0} = H eT i=1



By Lemma 12.17, E(NT(c,dl) = E(N ,u(Tc,Td]) = TE(NEu (c,d]) - T(d -c).

T (d -c), which proves (a). For part (b) go through the same steps as

in the proof of Theorem 8.2, with only obvious changes.

In previous chapters we have encountered a variety of results, re-

lated to the Poisson convergence of upcrossings of an increasing level.

There are no further difficulties in extending these results to cover

e-upcrossings. However, we do not want to lengthen an already long jour-

ney over an ocean of lemmas. We just finish by mentioning that a little

further generality may be obtained throughout by including a function

of slow growth (or perhaps slow decrease) instead of C in (12.1).

This has been considered by Qualls and Watanabe (1972), and also by

Berman (1971 b).



CHAPTER 13

EXTREMES OF CONTINUOUS ?ARIMETER STATIONARY PROCESSES

Our primary task in this chapter will be to discuss continuous :;ara-

meter analogues of the sequence results of Chapter 2, and in particular

to obtain a corresponding version of Gnedenko's Theorem which applies

in the continuous parameter case.

Specifically throughout this chapter we consider a (strictly) sta-

tionary process 4t); t -01 satisfying the general assumption stated

at the start of Chapter 6. In particular it will be assumed that [(t)

has a.s. continuous sample functions, continuous one-dimensional dis-

tributions, and that the underlying probability space is complete. As

shown in Lemma 6.1, it then follows that M(I) = supf.(t); t EI is a

r.v. for any interval I and, in particular, so is M(T) = M([O,T]).

Our main interest here concerns distributional properties of M(T)

as T -- , a subject considered for the special (important) case of

normaZ processes in Chapters 7 and 12. We shall obtain asymptotic re-

sults for the general stationary processes considered here, along the

same lines as those for stationary sequences, obtained in Chapter 2.

In particular continuous parameter versions of Gnedenko's Theorem will

be proved under appropriate dependence restrictions on ,(t), analo-

gous to the Condition D(un) . We shall also obtain results of the type

PiM(T) <uT! - e- T  (cf. Theorem 2.6) where u * = in an appropriate

manner as T * , using a continuous parameter analogue of the Condi-

tion D'(u n).

The general theory will not require that the mean number of upcross-

ings of a level u be finite, and therefore will include normal pro-

cesses of the type considered in Chapter 12. As we shall indicate, the

Chapter 1.2 results can be obtained from the general theory of this chapter,

though of course the same ultimate amount of work is involved. We shall

also consider the special case in which the mean number of upcrossings of



any level per unit time finite and ctainr Poisson li1ri tneorems

generalizing those of Chapter 8 to include non-normal processes.

As indicated in Chaster 7, it is convenient to relate the maxim,,

M(T) of the continuous process to the maximum of n terms of i se-

quence of "submaxima". Specifically if for some conveniently chosen

h , 0 we write

(13.1) i = s-upf 't) ; (i-l)h < t < ih!

then for any n = 1, 2, ... we have

(13.2) M(nh) = max(l, 2' n

It is apparent that the properties of M(T) as T - may be obtained

from those of M(nh) by writing n = [T/h] and thus approximating T

by nh.

As noted above, we shall consider continuous parameter analogues (to

be called C(uT) , C' (uT)) of the Conditions D(un), D'(u n ) used for se-

quences. The Condition C(uT) will be used in ensuring that the sta-

tionary sequence {in} defined by (13.1) satisfies D(un) . However be-

fore introducing this condition we note a preliminary form of Gnedenko's

Theorem which simply assumes that the sequence f. n} satisfies O(U n.

This result follows immediately from the sequence case and clearly illu-

strates the central ideas required in the continuous parameter context.

The more complete version (Theorem 13.5) to be given later, of course

simply requires finding appropriate conditions, of which the main one

will be C(uT), on (t), to guarantee that fn I will satisfy D(un).

THEOREM 13.1 Suppose that for some families of constants ;aT '0,, -bT

we have

(13.3) P~aT (M(T) -bT) x) , G(x) as T .

for some non-degenerate G, and that the {fiI sequence defined by

(13.1) satisfies D(un) whenever un = x/anh + bnh for some fixed

h > 0 and all real x. Then G is one of the three extreme value types.

.., ° i.,



PROOF Since (13.3) holds in particular as T through values nh

and the rn-sequence is clearly stationary, the result follows by re-

placing n by rn in Theorem 2.4 and using (13.2).

Although we shall not make further use of the fact, it is interest-

ing to note that this at once implies that Gnedenko's Theorem holds

under "strong mixing" assumptions as the following corollary shows.

COROLLARY 13.2 Theorem 13.1 holds in particular if the D(u n ) condi-

tions are replaced by the assumptions that {,(t)1 is strongly mixing.

For then the sequence { n} is strongly mixing and hence satisfies

D(u n). a

We now introduce the continuous analog of the Condition D(u n), sta-

ted in terms of the finite-dimensional distribution functions Ft...t

of F(t), again writing F t (u) for t (u,...,u).

The points ti will be members of a discrete set {JqT; j =1, 2, 3, ...

where {qT} is a family of constant. tending to zero as T - - at a

rate to be specified later.

C(UT): The Condit-i-i C(u,) wi1Z be said to hold for the process

S(t) and the family of asotants {UT; T > 0}, with respect to te o:-

stants qT 0, if for any ointo s I < s2 < ... < Sp t I < ... < tp,

belonging to {kqT; 0 -kqT <T} aa atisfging tI  S ?p >Y, :e

(13.4) IFsI .. s t] tp (u T )  FsI''Sp (u T )  Ftl''tp (u T )

'1' -L T- p

- aT,Y

where aT,YT 0 for some family yT = o(T).

As in the discrete case we may (and do) take a T,y to be non-in-

creasing as y increases and also note that the condition aT,YT - 0

for some yT = o(T) may be replaced by

(13.5) aT,XT .0 as T-
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for each fixed X - 0.

The D(u n) condition for :, n required in Theorem 13.1 will now

be related to C(uT) by approximating crossings and extremes of the

continuous parameter process, by corresponding quantities for a "sampled

version". To achieve the approximation we require two conditions in-

volving the maximum of 7(t) in fixed and in very small time intervals.

These conditions are given here in a form which applies very generally

- readily verifiable sufficient conditions for important cases are

given later in this chapter.

It will be convenient to introduce a function p(u) which will gen-

erally describe the form of the tail of the distribution of the maximum

M(h) in a fixed interval (0,h) as u becomes large. Specifically we

shall as needed make one or more of the following successively stronger

assumptions:

(13.6) P r(0) >u} = ( (u))

(13.7) P{M(q) >u} o(p(u)) for any q = q(u) - 0 as u -,

(13.8) there exists h0 > 0 such that

lim sup P{M(h) >uj/(hw(u)) < 1, for 0 < h < h 0 ,
U-

(13.9) P(M(h) >u} - h,(u) as u - , for 0 < h < h0 .

Note that Equation (13.9) commonly holds and specifies that the tail

of the distribution of M(h) is asymptotically proportional to ,(u),

whereas (13.8) is a weaker assumption which is sometimes convenient as

a sufficient condition for the yet weaker (13.7) and (13.6). As we

shall see later p(u) can also be identified with the mean number of

upcrossings of the level u per unit time, p(u), in important cases

when this is finite. In any case it is of course possible to define

(u) to be P{M(h 0 ) >u}/h0 for some fixed h0 > 0, or some asymptoti-

cally equivalent function and then attempt to verify any of the above

conditions which may be needed.



We shall also require an assumption relating "continuous and dis-

crete" maxima in fixed intervals. Specifically we assume, as required,

that for each a > 0 there is a family of constants {q} = {q a(U)i

tending to zero as u - for each a > 0, such that for any fixed

h > 0,

(13.10) lim sup P{M(h) >u, C(jq) <u, 0 < jq <h:/,(u) - 0 as a - 0.
U'.

Finally a condition which is sometimes helpful in verifying (13.10) is

(13.11) lim sup P{f (0) :u, ,(q) :u, M(q) >u} _ 0 as a - 0.
U -' q (u)

dere the constant a specifies the rate of convergence to zero of

q (u) - as a decreases, the grid of points {qa(U)} tends to become

(asymptotically) finer, and for small a the maximum of Et) on the dis-

crete grid approximates the continuous maximum well, as will be seen

below. (Simpler versions of (13.10) and (13.11) would be to assume the

existence of one family q = q(u) of constants such that the upper

limits in (13.10) and (13.11) are zero for this family. It can be seen

that one can do this without loss of generality in the theorems below,

but it seems that, as was the case in Chapter 12, the conditions in-

volving the parameter a often may be easier to check.)

The following lemma contains some simple but useful relationships.

LEMMA 13.3 (i) If (13.8) holds so does (13.7) which in turn implies

(13.6). Hence (13.9) clearly implies (13.8), (13.7), and (13.6).

(ii) If I is any interval of length h and (13.6), (13.10) both

hold, then there are constants a such thata

(13.12) 0 - lim sup[P{ (jq) <u, jqEI} - PIM(I) <u}/(u) < Xa - 0
U-

as a - 0, where q = qa(u) is as in (13.10), the convergence being

uniform in all intervals of this fixed length h.

(iii) If (13.7) and (13.11) hold so does (13.10) and hence, by (ii)

so does (13.12).
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(iv) If (13.9) holds and I1 = (0,h), 12 = (h,2h) with & < h h 0/2,

then P{M(I1) >u, M(I2 ) >u; = o(4(u)) as i - -.

PROOF (i) If (13.8) holds and q -0 as u- -, then for any fixed h> 0,

q is eventually smaller than h and P(M(q) > u} < P{M(h) > u}, so that

lim sup P{M(q) >u}/Au) I lir sup Pi'M(h) >us/4(u) < h

by (13.8). Since h is arbitrary it follows that P{M(q) >u}/y(u) - 0,

giving (13.7). It is clear that (13.7) implies (13.6) since Pj (0) >u;

< P{M(q) -ui, which proves (i).

To prove (ii) we assume that (13.6) and (13.10) hold and let I be an

interval of fixed length h. Since the numbers of points jq in I and in

(0,h] differ by at most 2, it is readily seen from stationarity that

P{ (jq) <u, jqEI) < P{ (jq) <u, 0 < jq -h) + P{f (0) >u} + P{ (h) > u}

so that

0 < P{ f(jq) <u, jqE I) - P{M(I) <u

SP( F(jq) <u, 0 < jq <h} - P{M(h) <u} + 2P{ (0) >u}

= P{M(h) >u, (jq) <u, 0 < jq <h) + 2P( (0) >u)

from which (13.12) follows at once by (13.6) and (13.10), so that (ii)

follows.

To prove (iii) we note that there are at most [h/q] complete inter-

vals [(j-l)q,jq) in [0,h] with perhaps a smaller interval remaining

so that

P{M(h) >u, (jq) <u, 0 <jqh} < P{((0) <u, r(q) <u, M(q) >u}

+ P{M(q) > u}

so that (13.10) easily follows from (13.11) and (13.7).

Finally if (13.9) holds and I1 = (0,h), 12 = (h,2h) with

0 < h - h0/2, then

P(M(I 2) >u) = P{M(I I ) >u} = h p(u) (1 +o(1))

and

m ,m~ m ~ mm
0



P{M(I I ) I u; U {M(I 2 ) -uf= P{M(I1 U 12) > = 2h4(u) (1 +o(1)

so that

P{M(I ) > U, M(I 2 ) >u: = PfM(I I ) >u} + P{M(I 2) >ui

- P({M(I I ) >u) U {M(I 2 ) >u})

= o(4(u))

as required. C

For h > 0, let {T n be a sequence of time points such T E [nh,n n

(n+l)h) and write vn = u . It is then relatively easy to relate
n

D(v n ) for the sequence ( } to the condition C(uT) for the process

S(t), as the following lemma shows.

LEMMA 13.4 Suppose that (13.6) holds for some function 0(u) and let

{qa(u)) be a family of constants for each a > 0 with q (u) > 0,

qa (u) - 0 as u * , and such that (13.10) holds. If C(uT) is satis-

fied with respect to the family qT = qa(uT) for each a > 0, and

TP(uT) is bounded, then the sequence { ) defined by (13.1) satis-

fies D(vn) , where v= uT is as above.
n

PROOF For a given n, let iI < i2 < ... < ip < < <

Jl - ip > Z. Write Ir = [(ir -l)h, i rh], is = [(js -l)h, js h. For

brevity write q for the elements in one of the families fq a (-)} and let

p p
Aq = fr(jq) <v n , jq E Ir, A = n {ir <vn

q r1 l r=l 1r-

Bq = n fU(jq) <v n , jq EJs, B = n f s <V n
q s=l -nS=l ) 5

It follows in an obvious way from Lemma 13.3 (ii) that

0 < lim supfP(A Bq) - P(AB)} < lim sup(p+p')(v n)A
n- nna

lim sup n(v n )a < a

for some constant K (since nh- Tn and Tn 0(vn) is bounded) and where

x ' 0
a
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as a - 0. Similarly

lim supIP(A q ) -P(A)i < K a, lir supIP(B q) -P(B) < Ka
n n--

Now

IP(A nB) -P(A) P(B) I < IP(A nB) -P(A NB )I

+ iP(Aq NB q) -P(Aq) P (1q)I + P(Aq )IP(B q -P(B),

(13.13) + P(B)IP(A q) -P(A)j

=Rn, a + JP(Aq nBq) -P(Aq)P(Bq)I

where lim sup Rn,a < 3KA a
n -

Since the largest jq in any Ir  is at most i ph, and the smallest

in any Js is at least (j, -l)h, their difference is at least

(Z-l)h. Also the largest jq in J does not exceed j ph < nh Tnpn

so that from (13.4) and (13.13),

(13.14) IP(A NB) -P(A)P(B): < Rn,a + (a)
I -n~a T n,(k-l)h

in which the dependence of aT,£ on a is explicitly indicated.

Write now a*,,= inf(R +a) lh. Since the left-hand side of
a>0 n,a

(13.14) does not depend on a we have

I P(A nB) -P(A)P(B) I < I

which is precisely the desired conclusion of the lemma, provided we

can show that lim a An 0 for any x > 0 (cf. (2.3)). But, for any
n- nXn

a > 0,

* R + (a) R + a(a)
n,xn - n,a Tno (An-l)h - n,a T nXTn/2

when n is sufficiently large (since a(a) decreases in Z), and
T,2

hence by (13.5)

lim sup a*,n 3AK a'
nAn

and since a is arbitrary and A a * 0 as a - 0, it follows that

n*,n 0 as desired.
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The general continuous version of Gnedenko's Theorem is now readily

restated in terms of conditions on F(t) itself.

THEOREM 13.5 With the above notation for the stationary process {F(t)}

satisfying (13.6) for some function suppose that there are constants

aT > 0, bT such that

P{aT(M(T) -bT) x} G(x)

for a non-degenerate G. Suppose that TJ(uT) is bounded and C(uT)

holds for uT = x/aT + bT for each real x, with respect to families

of constants {qa(U)} satisfying (13.10). Then G is one of the three

extreme value distributional types.

PROOF This follows at once from Theorem 13.1 and Lemma 13.4, by choos-

ing T = nh.

As noted the conditions of this theorem are of a general kind, and

more specific sufficient conditions will be given in the applications

later in this chapter.

Convergence of P{M(T) <uTI

Gnedenko's Theorem involved consideration of P{aT{M(T) -b T} x), which

may be rewritten as P{M(T) <uTI with uT = x/aT + bT. We turn now to

the question of convergence of P{M(T) <u TI as T - for families

UT which are not necessarily linear functions of a parameter x.

(This is analogous to the convergence of P(Mn <un ) for sequences, of

course.) These results are of interest in their own right, but also

since they make it possible to simply modify the classical criteria for

domains of attraction to the three limiting distributions, to apply in

this continuous parameter context.

Our main purpose is to demonstrate the equivalence of the relations
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P{H(h) >uT; - /T and PT(T) <uT } - e under appropriate cond4ticns.

The following condition will be referred to as C'(u T ) and is analogous

to D'(u n ) defined in Chapter 2, for sequences.

C_ (_uT): 7e 7onlition C' (u T )  ,;iZ ?e aaii to ;o-.Z fcr !he

f -t) ,:J the a"i of constan~ts {uT ; T Oi,u9

constanto qT 0 if lir sup T Z Pf (0) >u (jq) > UT 0 as
T q h<jq<ET

F- 0, fcr some h > 0.

The following lemma will be useful in obtaining the desired equiva-

lence.

LEMMA 13.6 Suppose that (13.9) holds for some function ,,, and let

{UT I be a family of levels such that C' (uT) holds with respect to

families {q (U) } satisfying (13.10), for each a > 0, with h in

C'(uT) not exceeding h0/2 in (13.9). Then Ti(uT) is bounded, and

writing n' = (n/k], for n and k integers,

(13.15) 0 < lim suptn'P{M(h) >vn } -PfM(n'h) >v n}] = o(k-1 ), as k ,
nn

with vn = uT , for any sequence (TnI with Tn E [nh,(n+l)h).n

PROOF We shall use the extra assumption

(13.16) lim inf T (uT) > 0,
T-

in proving T (uT) bounded and (13.15). It is then easily checked

(e.g. by replacing T (uT) be max(l, TO(uT)) in the proof) that the

result holds also without the extra assumption.

Now, write I. = [(j-l)h,jh], j =1, 2,... and M q(1) = max{ (jq;

jq EI}, for any interval I. We shall first show that (assuming (13.16)

holds)

(13.17) 0 < lim sup 1- [n'P{M(h) >v nI - P(M(n'h) >vn}] = o(k - I )

n - T (vn n n

as k + -. The expression in (13.17) is clearly non-negative, and by

stationarity and the fact that M > Mq, does not exceed



n
lir sup T " [PM(I ) v - P:M (I]) >Vn:]n

-
- Tn (Vn) j=1 J n q3 n

I no
+ lir sup T (v) P'M (I. V - P;M (n'h) -v n].

By Lemma 13.3 (ii), the first of the upper limits does not exceed

Xa lim sup n'/T a/(hk), where a 0 as a * 0. The expression
nna

in the second upper limit may be written as

n' no n'

T1O r PiMq(Ij) >v ' - . P M (I) vn , Mq( U I;) Iv ']n n n q j=j n =+i n

no

_E ) i P 'Mq(I1 ) >vn , M q (I Vn!
n n'

+ T i(v PfM (I) 'vn  M ( U I) vn

n n j=1 q n q=j+2

S+ n'h 2 PF(0) > V (3q) >v
-Tn qTnt(vn) h<]qn'h n n

by Lemma 13.3 (U-) and some obvious estimation using stationarity. By

C'(uT), using (13.16), the upper limit (over n) of the last term is

readily seen to be o(k-lI for each a > 0, and (13.17) now follows by

gathering these facts.

Further, by (13.17) and (13.9)
lmnf 1 1}

lim inf (V) lim inf 1 P{M(n'h) >vn
n- T n (vn n- T n'(n n

lim inf 1 n'PM(h) >vn }
n -T nP(Vn) n

- lim sup T1pn) [n'PfM(h) >v } -PfM(n'h) >v
n- T ( n n

and hence lim inf(T n v n))-  > 0. Thus Tn4(uT ) is bounded for any
n n

sequence [Tn} satisfying nh < Tn < (n + 1)h, which readily implies that

TO(uT) is bounded. Finally, (13.15) then follows at once from (13.17).

C3
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COROLLARY 13.7 Under the conditions of the lemma, if nk =

- n'h.(v n ) -P'M(n'h) > n, then lim sup n, (k) as 
n -

PROOF Noting that n',(v n ) is bounded, this follows at once from the

lemma, by (13.9). a

Our main result now follows readily.

THEOREM 13.8 Suppose that (13.9) holds for some function g, and let

uT} be a family of constants such that for each a > 0, C(uT) and

C' (u T ) hold with respect to the family qa (u)l of constants satisfying

(13.10), with h in C' (uT) not exceeding h0/2 in (13.9). Then

(13.18) T (uT) > 0

if and only if

(13.19) PiM(T) <uT I eT

PROCF If (13.9), (13.10), and C'(uT) hold as stated, then T (uT)

is bounded according to Lemma 13.6 and by Lemma 13.4 the sequence of

"submaxima" { n } defined by (13.1) satisfies D(vn), with vn = uT ,
n

for any sequence {TnI with Tn E [nh, (n+l)h) . Hence from Lemma 2.3,

writing n' = [n/k],

(13.20) PiM(nh) <v n - Pk{M(n'h) <v } - 0 as n- n - n

Clearly it is enough to prove that

(13.21) Tn (Vn ) -. T > 0

if and only if

(13.22) P{M(T n ) n vn I e-T,

for any sequence (T n with Tn E [nh, (n+l)h). Further, Tip(uT)

bounded implies that ,(uT) - 0 as T - so that

0 < P{M(nh) <Vn I P(M(Tn) <V n

P(M(h) >v n I hs(nv n 0,



and thus (13.22) holds if and only if

(13.23) P{M(nh) <v n - e

Hence it is sufficient to prove that (13.21) and (13.23) are equivalent

under the hypothesis of the theorem.

Suppose now that (13.21) holds so that in particular

(13.24) n'h(v n ) - T/k as n - -.

With the notation of Corollary 13.7 we have

(13.25) 1 - n'hy(v) Ank < P{M(n'h) v n } < I - n'h'(v n) + Xnk

so that, letting n -,

1 - T/k - o(k- I) < lim inf P{M(n'h) <v n
n-w

< lim sup P{M(n'h) <v n
n -

< 1 - T/k + o(k- ).

By taking k-th powers throughout and using (13.20) we obtain

(i-T/k-o(k- )) k < lir inf P{M(nh) <v
n- - n

< lim sup P{M(nh) <v }
n---

< (i-T/k +o(k- )) k ,

and letting k tend to infinity proves (13.23).

Hence (13.21) implies (13.23) under the stated conditions. We shall

now show that conversely (13.23) implies (13.21). The first part of the

above proof still applies so that (13.20) and the conclusion of Corol-

lary 13.7, and hence (13.25), hold. A rearrangement of (13.25) gives

1 - P{M(n'h) <v n } - nk n'hi(v n )

< 1 - P{M(n'h) <v n I + nk"

But it follows from (13.20) and (13.23) that P[M(n'h) <v n  e-Ik

and hence, using Corollary 13.7, that
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I - e- 7/ k 
- o(k - I  lim inf n'h (vn

lim sup n'h-(v nn--

S 
/ k 

+ o(k-).

Multiplying through by k and letting k - - shows that T n(v n

- nhl (vn) - -, and concludes the proof that (13.23) implies (13.21).

Associated sequence of independent variables

With a slight change of emphasis from Chapter 2 we say that any i.i.d.

sequence ri' 2' '" whose marginal d.f. F satisfies

1 - F(u) - P{M(h) > ul

for some h > 0, is an independent sequence associated with fyt)}.

If (13.9) holds this is clearly equivalent to the requirement

(13.26) 1 - F(u) - htp(u) as u - -.

Theorem 13.8 may then be related to the corresponding result for i.i.d.

sequences in the following way.

THEOREM 13.9 Let {uT I be a family of constants such that the

conditions of Theorem 13.8 hold, and let C 1 r2 ' "'' be an associated

independent sequence. Let 0 < o < i. If

(13.27) P(M(T) < u I 0 as T

then

(13.28) P{Mn <v n * as n *

with vn = u nh. Conversely, if (13.28) holds for some sequence {v n

then (13.27) holds for any fuT) such that w(uT) - (V[T/h]),

provided the conditions of Theorem 13.8 hold.

PROOF If (13.27) holds, and o = e-TPROF f 13.7)hodsan o= , Theorem 13.8 and (13.26) give
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1 - F(u nh h(u nh) -/n,

so that P{M n < u nh e giving (13.28). Conversely, (13.28) and

(13.26) imply that hl(vn) - 1 - F(v n n r/n and hence

T (uT) - T (v [T/h ] ) - TT/(h[T/h]) T

so that (13.27) holds by Theorem 13.8.

These results show how the function ,p may be used in the classical

criteria for domains of attraction to determine the asymptotic distri-

bution of M(T). We write D(G) for the domain of attraction to the

(extreme value) d.f. G, i.e. the set of all d.f.'s F such that

Fn (x/an b n ) - G(x) for some sequences {an > 0}, {bn 1.

THEOREM 13.10 Suppose that the conditions of Theorem 13.8 hold for

all families fuTI of the form uT = x/aT + bT ' where aT > 0, bT

are given constants, and that

(13.29) P{aT(M(T) - bT) < x} - G(x).

Then (13.26) holds for some FE D(G). Conversely, suppose (13.9) holds

and that (13.26) is satisfied for some FE D(G), let a' > 0, b' ben 'n

constants such that Fn(x/an +b') - G(x), and define aT = ajT/h

bT = b T/h ]. Then (13.29) holds, provided the conditions of Theorem 13.8

are satisfied for each uT = x/aT + bT, - < x < .

PROOF If (13.29) holds, together with the conditions stated, Theorem

13.9 applies, so that in particular

P{anh(Mn - bnh) < x1 - G(x)

where M is the maximum of the independent sequence of associatedn

variables c I' '- n" It follows at once that their marginal d.f.

F belongs to D(G), and (13.26) is immediate by definition.

Conversely, suppose (13.26) holds for some d.f. FE D(G), and let

Ci' c2' ... be an i.i.d. sequence with marginal d.f. F, and suppose

that for vn = x/aA b',



P{M< v n G(x) as n .n- fl

Then clearly, for a [T aiT/h] , bT b bT/h], and uT x/aT + bT,

(u T )  , (v It/h] )

so that Theorem 13.9 applies, giving (13.29).

Stationary normal processes

Although we have obtained the asymptotic distributional properties of

the maximum of stationary normal processes directly, it is of interest

to see how these may be obtained as applications of the general theory

of this chapter. This does not lessen the work involved, of course,

since the same calculations in the "dIirect route" are used to verify

the conditions in the general theory. However the use of the general

theory does also give insight and perspective regarding the principles

involved. We deal here with the more general normal processes considered

in Chapter 12. This will include the (Chapter 7) normal processes with

finite second spectral moments considered in Chapter 7, of course.

The latter processes may also be treated as particular cases of

general processes with finite upcrossings intensities - a class dealt

with later in this chapter.

Suppose then that "(t) is a stationary normal process with zero

mean and covariance function (12.1), viz.,

(13.30) r(T) = I - CITI" + o(JTK') as T - 0

where 0 , CL - 2. The major result to be obtained is Theorem 12.15,

restated here.

THEOREM 12.15 Let fr(t)} be a zero-mean stationary normal process,

with covariance function r(t) satisfying (13.30) and
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(13.31) r(t) log t 0, as t - .

If u = u T and i(u) CI /t H u . (u)/u (with H defined

in Theorem 12.9), and if T(u T ) , then P2M(T)<u: - e - " as

T -.

PROOF FROM THE GENE7?AL THEORY Write (u) = ,(u) so that I (u T  .

Theorem 12.9 shows at once that (13.9) holds (for all h , 0). Define

qa(u) = au , and note that (13.10) holds, by (12.21). Hence the re-

sult will follow at once if C(UT), C' (UT) are both shown to hold with

respect to jqa (u)j for eoch a > 0.

It is easily seen in a familiar way that C(uT) holds. For by Lemma

3.2 the left hand side of (13.4) (with qa (u) for q(u), u = uT) does

not exceed

P p' -u2/(l + lr(t -s i )

K " Z ir(t. -si)j e
i=l j=l J

which is dominated by

K T Z !r(kq) eu 2/(l + ;r(kq)l),q fwkqT

and this tends to zero for each {q) {qa) , a fixed, by Lemma 12.12.

If we identify this expression with aT,y then (13.5) holds almost

trivially since aT,XT < CT,y for any fixed y when XT > y.

C' (uT) follows equally simply by Lemma 3.2 which gives

JPJ (0) ?u, c(jq) -u) - (1 -Io(u)) 2  _< K2r(jq)I e - u 2 /(l +  r(jq))

so that

T E P{ (0) >u, F,(jq) >u)
q h<jqET

< cT(l -2(u)) + K r(jq)j e-U 2/(U+r(jq)
q q hejq<FT

II



The second term tends to zero as T ' again by Lemma 12.12. The

first term is asymptotically equivalent to

cT2 (1(u))2 T2

2 2 a2C2/uH2
S u aC

by the definitions of q and ,)(u), and the fact that T (u)

Since 2/a2 - 0 for each fixed a as E - 0, C'(u T ) follows.

Finally, we note that the "double exponential limiting distribution"

for the maximum M(T) (Theorem 12.16) follows exactly as before from

Theorem 12.15.

Processes with finite upcrossing intensities

We show now how some of the conditions required for the general theory

may be simplified when the mean number ji(u) of upcrossings of each

level u per unit time is finite. This includes the particular normal

cases with finite second spectral moments already covered in Chapter 7

and in the preceding section, but of course not the "non-differentiable"

process with a < 2.

We use the notation of Chapter 6 in addition to that of the present

chapter and assume that i = p(u) = E(N u(1)) < - for each value of u.

Writing as in (6.1), for q > 0,

(13.32) J (u) = Pf(, 0) -u er(q)}/q

it is clear that

(13.33) q (u) < PfN u l) /q E(N u(q))/q =

and it follows from Lemma 6.3 that

(13.34) q (u) - vj as q - 0

for each fixed u.

In the normal case we saw (Lemma 6.6) that Jq (u) '- (u) as q * 0



in such a way that uq - 0. Here we shall use a variant of this

property assuming as needed that, for each a > 0, there are

constants qa(u) - 0 as u * such that, with qa = qa (u ) '

p= p (u) ,

(13.35) lir inf J (u)/0 , v

u a- a

where va - 1 as a - 0. (As indicated below this is readily verified

when (t) is normal when we may take qa (u) = a/u.)

We shall assume as needed that

(13.36) P{ (O) >u) = o(j(u)) as u ,

which clearly holds for the normal case but more generally is readily

verified if, for example for some q = q(u) - 0 as u

(13. 37) lim sup P{ (0) >u, (S() >u} <
• . P (0) > u

since (13.37) implies that lim inf qJ q(U)/P{(0) >u} > 0, from which
U-

it follows that P{(O) >u}/Jq (u) - 0, and hence (13.36) holds since

J (u) < w(u).q

We may now recast the conditions (13.8) and (13.9) in terms of the

function W(u), identifying this function with (u).

LEMMA 13.11 (i) Suppose (u) < - for each u and that (13.3G) (or

the sufficient condition (13.37)) holds. Then (13.8) holds with

=(u).

(ii) If (13.35) holds for some family fqa(u)) then (13.11) holds

with (u) = w(u).

PROOF Since clearly

P(M(h) >u} < P(N u(h) >11 + P{(0) >u) < ph + P{f(0) >u},

(13.8) follows at once from (13.36), which proves (i).

Now, if (13.35) holds, then with q = qa(u), P =(u),
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P{ (0) <u, (q) <u, M(q) >u} =

= P{I(0) <u, M(q) > u) - P{ (0) <u < u (q))

P{Nu(q) >1i - qJq(U)

q- Wq'a (I +o(i))

so that

lim sup P{ (0) <u, ,(q) <u, M(q) >u)/(qw) < 1 - va

which tends to zero as a - 0, giving (13.11).

In view of this lemma, Gnedenko's Theorem now applies to processes

of this kind using the more readily verifiable conditions (13.35) and

(13.36), as follows.

THEOREM 13.12 Theorem 13.5 holds for a stationary process { (t)} with

(u) = u(u) < - for each u if the conditions (13.6) and (13.10) are

replaced by (13.35) and (13.36) (or by (13.35) and (13.37)).

PROOF By (W) of the previous lemma the condition (13.36) (or its

sufficient condition (13.371) implies (13.81 and hence both (13.6) and

(13.71 On the other hand (ii) of the lemma shows that (13.35) implies

(13.11) which together with (13.7) implies (13.10) by Lemma 13.3 (iii).D

The condition (13.10) also occurs in Theorem 13.8 and may of course

De replaced by (13.35) there, since (13.7) is implied by (13.9) which

is assumed in that theorem.

Finally we note that while (13.36) and (13.37) are especially con-

venient to give (13.8) (Lemma 13.11 (i)), the verification of (13.9)

still requires obtaining

lim inf P{M(h)> u/Ihlj(u)) > 1 for 0 < h < h0.
U _

This of course follows for all normal processes considered by Theo-

rem 1z.), with a = 2. There are a number of independent simpler deri-

vations of this when a = 2, one of these being along the lines of the
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"cosine-process" comparison in Chapter 7. The actual comparison used

there gave a slightly weaker result, which was, however, sufficient to

yield the desired limit theory by the particular methods employed.

Poisson convergence of upcrossings

It was shown in Chapter 8 that the upcrossings of one or more high levels

by a normal process r,(t) take on a specific Poisson character under

appropriate conditions. It was assumed in particular that the covariance

function r(t) of T(t) satisfied (7.1) so that the expected number

of upcrossings per unit time, p = E(Nu (1)), is finite.

Corresponding results are obtainable for E-upcrossings by normal

processes when r(t) satisfies (12.1) with a , 2 and indeed the proof

is indicated in Chapter 12 for the single level result (Theorem 12.18).

For general stationary processes the same results may be proved

under conditions used in this present chapter, including C, C'.

Again when u = EN u(1)) < - the results apply to actual upcrossings

while if . = they apply to -upcrossings. We shall state and brief-

ly indicate the proof of thie s)ecific theorem for a single level in

the case when Lj < -.

As in previous discussions, we consider a time period T and a level

UT both increasing in such a way that Tu - T > Ou = UI(UT)), and define

a normalized point process of upcrossings by

NT*(B) = Nu (TB), (N*(t) = N (tT))

T T T u T

for each interval (or more general Borel set) B, so that, in particular,

E(N*(l)) = E(Nu T(t)) = PT - T.

This shows that the "intensity" (i.e. mean number of events per unit

time) of the normalized upcrossing point process converges to T. Our

task is to show that the upcrossing point process actually converges
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in distribution to a Poisson process with mean T.

The derivation of this result is based on the following two exten-

sions of Theorem 13.8 which are proved by similar arguments to those

used in obtaining Theorem 13.8 and in Chapter 8.

THEOREM 13.13 Under the conditions of Theorem 13.8, if 0 < 8 < 1 and

pT - T, then

(13.38) P{M(OT) <u TI e-OT as T .

THEOREM 13.14 If IV 12 ... , Ir are disjoint subintervals of [0,1]

and I* = TI. = ft; t/T E I} then under the conditions of Theorem 13.8
3

if iT ,

(13.39) P(Mn I <UT1) - T) P{M(It)<T 0,

j=l I j=-

so that by Theorem 13.13

r
-T E .

(13.40) P n (Is)< U T e

where e. is the length of Ij, 1 < j < r.

33

It is now a relatively straightforward matter to show that the point

processes N*, converge (in the full sense of weak convergence) to a

Poisson process N with intensity T.

THEOREM 13.15 Under the conditions of Theorem 13.8 if T. - where

U = uiUTu), then the family N4 of normalized point processes of up-

crossings of uT on the unit interval converges in distribution to a

Poisson process N with intensity T on that interval as T -.

PROOF Again by Theorem A.1 it is sufficient to prove that

(i) E(N*{(a,b]}) - E(N{(a,b]}) = T(b-a) as T - for all a,b,
T

0 < a < b < 1.



(ii) PfN.(B) =0; - P(N(B) =0: as T . ' for all sets B of the
r

form U B. where r is any integer and B. are disjoint in-
1 3

tervals (aj,b.] C (0,11.

Now i) follows trivially since

E(N*((a,b]}) = wT(b-a) - T(b-a).

T

To obtain (ii) we note that

0 P{N*(B) =01 - P{M(TB) <u T

= P{Nu (TB) = 0, M(TB) > uT

r
Z P{f(Taj) >u

j= T

r
since if the maximum in TB = U (Ta., Tb.] exceeds UT, but there are

j=l J

no upcrossings of uT in these intervals, then r(t) must exceed uT at

the initial point of at least one such interval. But the last expression

is just rP{C(0) >uT i- 0 as T * =. Hence

P{N*(B) =0; - P[M(TB) euT * 0.
Tr T K (bj-aj

But P{M(TB) <u P' n (M(TB) <UT; e by Theorem 13.14jKl -TZ(bj-a

so that (ii) follows since P{N(B) =0} = e

COROLLARY 13.16 If B. are disjoint (Borel) subsets of the unit inter-

val and if the boundary of each B. has zero Lebesgue measure then
J

ri
r -Tm (B) [Tm(B.)]

P{N*(B,) =r., 1 < jn} I n eT j=l r

where m(B.) denotes the Lebesgue measure of B..

PROOF This is an immediate consequence of the full distributional

convergence proved (cf. Appendix).

The above results concern convergence of the point processes of up-

crossings of uT in the unit interval to a Poisson process in the unit

interval. A slight modification, requiring C and C' to hold for all
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families U5T in place of uT for all - 0, enables a corresponding

result to be shown for the upcrossings on the whole positive real jine,

but we do not pursue this here. Instead we show how Theorem 13.15 yields

the asymptotic distribution of the r-th largest local maximum in (0,T).

Suppose, then, that '(t) has a continuous derivative a.s. and (cf.

Chapters 6 and 9) define N'(T) to be the number of local maxima inu

the interval (0,T) for which the process value exceeds u, i.e. the

number of downcrossing points t of zero by ' in (0,T) such that

(t) > u. Clearly N'(T) > Nu(T) - 1 since at least one local maximum

occurs between two upcrossings. It is also reasonable to expect that

if the sample function behaviour is not too irregular, there will

tend to be just one local maximum above u between most successive up-

crossings of u when u is large, so that N'u T) and N uT) will

tend to be approximately equal. The following result makes this precise.

THEOREM 13.17 With the above notation let {uT} be constants such

that P{((0) > uT} - 0, and that To(= Ti(uT )) - T > 0 as T - -.

Suppose that E(N' (l)u is finite for each u and that E(Nl)) - u(u)

as u - -. Then, writing uT = u, E(JN'(T) - Nu(T) i) - 0. If also the

conditions of Theorem 13.15 hold (so that PN u(T) = r} e-rTr/r!) it

follows that P{N (T) = r} - e-Tr/r!.

PROOF As noted above, N'(T) > Nu(T) - i, and it is clear, moreover,

that if N'(T) = N (T) - 1, then 1(T) u. Hence
u u

E(IN'(T) -N u(T)I) = E(Nu(T) -Nu(T)) + 2P{Nu(T) =Nu(T) - 11

TE(N (1))- uT+ 2P{ (T) > u) ,

which tends to zero as T - since P{F(T) >uT = P{<(0) >uT I 0

and TE(Nu T(1)) - uT = uT[ (1 + o(l))- 11 4 0, so that the first part of

the theorem follows. The second part now follows immediately since the

integer-valued r.v. N'(T) - N (T) tends to zero in probability, giv-u u

ing PCNu(T) * Nu(T)) - 0 and hence P{Nu(T) =r) - P{Nu(T) =r} - 0

for each r.
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Now write M(r) (T) for the r-th largest local maximum in the inter-

val (0,T) Since the events M (r) (T) u- ,N' T) - r: are identical

we obtain the following corollary.

COROLLARY 13.18 Under the conditions of the theorem
r-i

(r) I r-
P{Mr (T) <uT} Z -e 0

s=l

As a further corollary we obtain the limiting distribution of

M(r) (T) in terms of that for M(T).

COROLLARY 13.19 Suppose that P{aT(M(T) -b T ) <x} '- G(x) and that the

conditions of Theorem 13.8 hold with uT x/aT + bT for each real x

(and 0 = u). Suppose also that E(Nu(1)) - E(Nu(1)) as u - . Then

r-l
(13.41) PiaTUM (T) -b T ) T x} - G(x) Z - logG(x, ]S/s!

s=G

where G(x) > 0 (and zero if GX) = 0).

PROOF This follows from Corollary 13.18 by writing G(x) = e- T since

Theorem 13.8 implies that Tp - T. a

Note that, by Lemma 9.4(i), for a stationary normal process with

finite second and fourth spectral moments E(N'lI)) i so that

Theorem 13.17 and its corollaries apply.

The relation (13.41) gives the asymptotic distribution of the r-th

largest local maximum M(r) (T) as a corollary of Theorem 13.17. Further

it is clearly possible to generalize Theorem 13.17 to give "full Poisson

convergence" for the point process of local maxima of height above u

and indeed to generalize Theorem 9.5 and obtain joint distributions of

heights and positions of local maxima in this general situation.



Interpretation of the function A(un

The function A(u) used throughout this chapter describes the tail of

the distribution of the maximum M(h) in a fixed interval h, in the

sense of (13.9), viz.,

P. M(h) >u - - h (u) for 0 , h , h0 *

4e have seen how may be calculated for particular cases - as

A(u) = A(u) for processes with a finite upcrossing intensity 'Au)
(2/L) -1

and as (u) = K¢(u)u for normal processes satisfying (12.1).

Berman (1979) has recently considered another general method for ob-

taining (or at least many of its properties) based on the asymptot-

ic distribution of the amount of time spent above a high level.

Specifically Berman considers the time L t(u) which a stationary

process spends above the level u in the interval (0,t) and proves

the basic result

PfvL t(u > x}
lim * -r' (x),u E(vLt (u))

at all continuity points x > 0 of r' (under given conditions).

Here v = v(u) is a certain function of u and F(x) is an abso-

lutely continuous non-increasing function with Radon-Nikodym derivative

F', and t is fixed.

While this result does not initially apply at x = 0, it is extended

to so apply giving, since the events {Mft) > u}, {L tu) > 01 are equiva-

lent,

PfM(t) >u} -r''(0) E(vL t(u))

= -r' (0) vt(l -F(u))

where F is the marginal d.f. of the process, since it is very easily

shown that E(Lt(u)) t(l- F(u)). Hence we may - under the stated condi-

tion - obtain t as



-141-

(u) = -7' (0) v(u) (1 -F(u)).

It is required in this approach that F have such a form that it

belongs to the domain of attraction of the Type I extreme value distri-

bution and it follows (though not immediately) that M(h) has a Type I

limit so that (e.g. from the theory of this chapter) a limiting distri-

bution for M(T) as T - - must (under appropriate condition) also be

of Type I. However a number of important cases are covered in this ap-

proach including stationary normal processes, certain Markov Processes,
2

and so-called X -processes. Further the approach gives considerable in-

sight into the central ideas governing extremal properties.
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